scholarly journals BIOM-38. PI3K/AKT/mTOR SIGNALING PATHWAY ACTIVITY IN IDH-MUTANT DIFFUSE GLIOMA

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii9-ii10
Author(s):  
Esraa Mohamed ◽  
Anupam Kumar ◽  
Stephanie Hilz ◽  
Albert Wang ◽  
Anny Shai ◽  
...  

Abstract PI3K/AKT/mTOR signaling pathway activation is a common mechanism of tumor progression in diffuse lower grade glioma. Robust and accurate biomarkers are needed to stratify patients for therapies targeting this pathway. To investigate the potential of phosphoprotein quantification to provide a direct and functional pathway readout, we analyzed 90 tumors from 83 patients with IDH-mutant diffuse glioma. The cohort comprised 50 IDH-mutant astrocytomas, 40 IDH-mutant and 1p/19q-codeleted oligodendrogliomas, 7 of whom had paired samples from initial diagnosis and recurrence. We developed and validated a pipeline using multiplex immunofluorescence to quantify tumor cell-specific phospho-protein expression of 3 pathway nodes, ribosomal protein S6 (RPS6), PRAS40, and 4E-BP1. In oligodendroglioma the fraction of tumor cells expressing each of the three phosphorylated proteins increased with tumor grade (p< 0.05). Comparing tumors at initial diagnosis (n=48) and at recurrence (n=42), p-RPS6 and p-PRAS40 increased in tumor cells (p< 0.05) and there was an overall increase in intertumoral heterogeneity of signaling activity at recurrence (p< 0.04). Analysis of paired samples demonstrated increased signaling pathway activity in a subset at recurrence. Robust signaling activity, defined as a phospho-positive tumor cell fraction ≥ median for all three phosphoproteins, was identified in 71.4% of grade 3 IDH-mutant astrocytoma(5/7) and 45.4% of grade 3 IDH-mutant, 1p/19q-codeleted oligodendroglioma(5/11). In a subset of cases analyzed by targeted NGS, robust signaling pathway activity was identified in 38%(11/29) at the protein level while genetic alterations predicted to activate the pathway were present in only 17.2% (5/29). Our results demonstrate robust PI3K/AKT/mTOR signaling activity in a significant fraction of IDH-mutant diffuse glioma, an association with increasing tumor grade in oligodendroglioma, and an increase at recurrence in both oligodendroglioma and astrocytoma. Overall, our data suggest that quantitative evaluation of phosphoproteins may be a sensitive method to detect PI3K/AKT/mTOR pathway activity and may be useful for patient stratification.

2006 ◽  
Vol 100 (4-5) ◽  
pp. 107-116 ◽  
Author(s):  
James O’Kelly ◽  
Milan Uskokovic ◽  
Nathan Lemp ◽  
Jay Vadgama ◽  
H. Phillip Koeffler

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2355-2355
Author(s):  
Weina Chen ◽  
Ioannis Grammatikakis ◽  
Jiang Li ◽  
Vassiliki Leventaki ◽  
L. Jeffrey Medeiros ◽  
...  

Abstract Acute myelogeneous leukemia (AML) is a heterogeneous disease and includes a subset of neoplasms that harbor activating mutations of the fms-like tyrosine kinase-3 (FLT3) gene. Mutated FLT3 has recently been shown to activate downstream oncogenic pathways including the PI3K/AKT pathway (Scheijen, et al. Oncogene. 23:3338–3349, 2004; Choudhary, et al. Blood. 106:265–273, 2005). It is known that activated AKT mediates its effects, at least in part, through activation of mammalian target of rapamycin (mTOR). However, the potential role of PI3K/AKT/mTOR signaling pathway in tumor cell survival in AML remains largely unknown. We hypothesized that the PI3K/AKT signaling pathway is activated in AML and contributes to tumor cell survival through activation (phosphorylation) of mTOR and its downstream effectors 4EBP1, p70S6K, ribosomal protein S6 (rpS6), and eIF-4E. We used 3 AML cell lines, including MV4-11 and MOLM-13, that are homozygous and heterozygous for mutated FLT3, respectively, as well as U937 (wild-type FLT3). All 3 cell lines expressed activated (serine 473-phosphorylated) AKT (Ser473pAKT), and phosphorylated 4EBP1, p70S6K and rpS6 shown by Western Blot analysis. Treatment of AML cell lines with LY294002, an inhibitor of PI3K, resulted in a dose-dependent decrease of phosphorylation of AKT, mTOR, 4EBP1, p70S6K, and rpS6. This was associated with decreased cell viability as assessed by trypan-blue exclusion assay. Cell death following inhibition of the PI3K/AKT pathway was predominantly attributed to apoptosis as shown by increased annexin V staining assessed by flow cytometry. These changes were associated with downregulation of the anti-apoptotic proteins cFLIP, Mcl-1, and Bcl-XL that are involved in the extrinsic and intrinsic apoptosis. Cell cycle analysis using flow cytometry also showed that inhibition of PI3K resulted in decreased S-phase and increased G1-phase fraction. These cell cycle changes were associated with increased levels of the cyclin-dependent kinase inhibitor p27 and underphosphorylated Rb in a dose-dependent manner. Similar biologic effects, although to a lesser degree, were found after treatment of AML cells with rapamycin, an inhibitor of mTOR. In addition, expression of activated AKT, mTOR, 4EBP1, p70S6K and rpS6 was assessed in AML tumors (n=19) using tissue microarrays of bone marrow samples and immunohistochemical methods. These included tumors with (n=14) and without (n=5) FLT3 mutations. Using a 10% cutoff to define positivity, 13/19 (68%) expressed Ser473pAKT, 16/18 (89%) mTOR, 15/19 (79%) p4E-BP1, 18/19 (95%) p-p70S6K, and 15/18 (83%) p-rpS6. However, no association between expression of activated AKT, or mTOR signaling proteins and FLT3 mutational status was observed. Our study provides first evidence that the AKT/mTOR signaling pathway is activated in AML cell lines and tumors regardless of FLT3 mutational status. The AKT/mTOR signaling pathway may contribute to cell cycle progression and tumor cell survival in AML. Inhibition of this oncogenic pathway represents a potential target for therapy in patients with AML.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jens Dannull ◽  
Chunrui Tan ◽  
Christine Farrell ◽  
Cynthia Wang ◽  
Scott Pruitt ◽  
...  

Background. Dendritic cell- (DC-) tumor fusion cells stimulate effectivein vivoantitumor responses. However, therapeutic approaches are dependent upon the coadministration of exogenous 3rd signals. The purpose of this study was to determine the mechanisms for inadequate 3rd signaling by electrofused DC-tumor cell hybrids.Methods. Murine melanoma cells were fused with DCs derived from C57BL/6 mice. Quantitative real-time PCR (qPCR) was used to determine relative changes in Th (T helper) 1 and Th2 cytokine gene expression. In addition, changes in gene expression of fusion cells were determined by microarray. Last, cytokine secretion by fusion cells upon inhibition of signaling pathways was analyzed by ELISA.Results. qPCR analyses revealed that fusion cells exhibited a downregulation of Th1 associated cytokines IL-12 and IL-15 and an upregulation of the Th2 cytokine IL-4. Microarray studies further showed that the expression of chemokines, costimulatory molecules, and matrix-metalloproteinases was deregulated in fusion cells. Lastly, inhibitor studies demonstrate that inhibition of the PI3K/Akt/mTOR signaling pathway could restore the secretion of bioactive IL-12p70 by fusion cells.Conclusion. Our results suggest that combining fusion cell-based vaccination with administration of inhibitors of the PI3K/Akt/mTOR signaling pathway may enhance antitumor responses in patients.


2020 ◽  
Author(s):  
Minfen Zhang ◽  
Hui Chen ◽  
Ping Qin ◽  
Tonghui Cai ◽  
Lingjun Li ◽  
...  

2020 ◽  
Vol 27 ◽  
Author(s):  
Naser-Aldin Lashgari ◽  
Nazanin Momeni Roudsari ◽  
Saeideh Momtaz ◽  
Negar Ghanaatian ◽  
Parichehr Kohansal ◽  
...  

: Inflammatory bowel disease (IBD) is a general term for a group of chronic and progressive disorders. Several cellular and biomolecular pathways are implicated in the pathogenesis of IBD, yet the etiology is unclear. Activation of the mammalian target of rapamycin (mTOR) pathway in the intestinal epithelial cells was also shown to induce inflammation. This review focuses on the inhibition of the mTOR signaling pathway and its potential application in treating IBD. We also provide an overview on plant-derived compounds that are beneficial for the IBD management through modulation of the mTOR pathway. Data were extracted from clinical, in vitro and in vivo studies published in English between 1995 and May 2019, which were collected from PubMed, Google Scholar, Scopus and Cochrane library databases. Results of various studies implied that inhibition of the mTOR signaling pathway downregulates the inflammatory processes and cytokines involved in IBD. In this context, a number of natural products might reverse the pathological features of the disease. Furthermore, mTOR provides a novel drug target for IBD. Comprehensive clinical studies are required to confirm the efficacy of mTOR inhibitors in treating IBD.


2020 ◽  
Vol 19 (3) ◽  
pp. 165-173
Author(s):  
Xiaowei Zhang ◽  
Yuanbo Liu

Primary Central Nervous System Lymphoma (PCNSL) is a rare invasive extranodal non- Hodgkin lymphoma, a vast majority of which is Diffuse Large B-Cell Lymphoma (DLBCL). Although high-dose methotrexate-based immunochemotherapy achieves a high remission rate, the risk of relapse and related death remains a crucial obstruction to long-term survival. Novel agents for the treatment of lymphatic malignancies have significantly broadened the horizons of therapeutic options for PCNSL. The PI3K/AKT/mTOR signaling pathway is one of the most important pathways for Bcell malignancy growth and survival. Novel therapies that target key components of this pathway have shown antitumor effects in many B-cell malignancies, including DLBCL. This review will discuss the aberrant status of the PI3K/AKT/mTOR signaling pathways in PCNSL and the application prospects of inhibitors in hopes of providing alternative clinical therapeutic strategies and improving prognosis.


2019 ◽  
Vol 19 (5) ◽  
pp. 622-631 ◽  
Author(s):  
Ya Liu ◽  
Jian Kang ◽  
Hong Gao ◽  
Xiyu Zhang ◽  
Jun Chao ◽  
...  

Background: Type 2 Diabetes Mellitus (T2DM) is a world-wide metabolic disease with no cure from drugs and treatment. In China, The Traditional Chinese Medicine (TCM) herbal formulations have been used to treat T2DM for centuries. Methods: In this study, we proposed a formula called ShenQi Compound (SQC), which has been used in clinical therapeutics in China for several years. We evaluated the effect of SQC in a spontaneous diabetic rat model (GK rats) by detecting a series of blood indicators and performing histological observations. Meanwhile, the gene microarray and RT-qPCR experiments were used to explore the molecular mechanism of SQC treatment. In addition, western medicine, sitagliptin was employed as a comparison. Results: The results indicated that SQC and sitagliptin could effectively improve the serum lipid (blood Total Cholesterol (TC) and blood Triglycerides (TG)), hormone levels (serum insulin (INS), Glucagon (GC) and Glucagon-Like Peptide-1 (GLP-1)), alleviated the inflammatory response (hypersensitive C-Reactive Protein (hsCRP)), blood glucose fluctuation (Mean Blood Glucose (MBG), standard deviation of blood glucose (SDBG) and Largest Amplitude of plasma Glucose Excursions (LAGE)), pancreatic tissue damage and vascular injury for T2DM. Compared with sitagliptin, SQC achieved a better effect on blood glucose fluctuation (p<0.01). Meanwhile, the gene microarray and RT-qPCR experiments indicated that SQC and sitagliptin may improve the T2DM through affecting the biological functions related to apoptosis and circadian rhythm. Moreover, SQC might be able to influence the mTOR signaling pathway by regulating Pik3r1, Ddit4 expression. Conclusion: All these results indicate that SQC is an effective therapeutic drug on T2DM. Notably, SQC presents an obvious blood glucose fluctuation-preventing ability, which might be derived from the regulation of the mTOR signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document