scholarly journals 180. Alterations to the Gut Microbiomes and Acquisition of Bacteria Resistance Elements among US International Travelers

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S110-S110
Author(s):  
Sushmita Sridhar ◽  
Colin Worby ◽  
Ryan Bronson ◽  
Sarah Turbett ◽  
Jason Harris ◽  
...  

Abstract Background This study investigated the impact of international travel on the acquisition and carriage of antimicrobial resistance (AMR). We prospectively assessed U.S. international travelers for the acquisition of resistant Enterobacterales species and evaluated changes in travelers’ gut microbiomes. Methods Metagenomic sequencing was performed on DNA extracted from pre- and post-travel stool samples of 273 U.S. international travelers. We used Kraken2 to assess microbial gut composition and analyzed antibiotic resistance gene (ARG) content using the Resistance Gene Identifier (RGI) and ResFinder, and read mapping to ARG databases. We assessed the change in gut profile and resistome associated with (i) all international travel; (ii) travel to specific geographic regions; and (iii) traveler’s diarrhea. Results International travel resulted in a perturbation of the gut microbiome, which was greater in travelers receiving treatment for diarrhea during travel (p = 4E-5). There was an overall loss in microbial diversity following travel, regardless of health outcome (p = 0.011); this was most consistently observed in travelers to South East Asia (SEA) (loss of gut diversity in 81% of SEA travelers). 78% of all travelers had a higher relative abundance of E. coli after travel, including 85% of travelers who acquired AMR bacteria during travel. Travel to South Asia was also associated with a significantly greater increase of E. coli relative to other destinations (p = 0.04). Additionally, the relative abundance of Pasteurellales was higher in the pre-travel samples of those who subsequently acquired AMR bacteria (FDR = 0.08). Furthermore, there was a significant increase in ARG content among the post-travel samples, with regional differences in the magnitude of acquisition (Figure 1). 72% of all travelers had a greater resistance burden post-travel. SEA was associated with the greatest increase in resistome diversity, while South America was associated with the greatest increase in overall ARG content. Resistance genes present in the gut microbiome. Genes mapping to the Comprehensive Antibiotic Resistance Database were measured pre- (x-axis) and post-travel (y-axis) to assess the acquisition of resistance genes in association with travel, distinguished by geographic region. Colors indicate geographic regions visited by travelers: South America (red), South East Asia (blue), South Asia (green), Eastern Africa (purple), Southern Africa (orange), Other (grey). Conclusion International travel is associated with a perturbation in the gut microbial community, with the acquisition of AMR bacteria and genes, and an increase in the relative abundance of E. coli. These perturbations following travel may be important factors in the global spread of AMR. Disclosures All Authors: No reported disclosures

2020 ◽  
Author(s):  
Rebecca M. Lebeaux ◽  
Modupe O. Coker ◽  
Erika F. Dade ◽  
Thomas J. Palys ◽  
Hilary G. Morrison ◽  
...  

Abstract Background: Antibiotic resistance is an increasing threat to human health. The human gut microbiome harbors a collection of bacterial antimicrobial resistance genes (ARGs) known as the resistome. The factors associated with establishment of the resistome in early life are not well understood and clarifying these factors would inform strategies to decrease antibiotic resistance. We investigated the early-life exposures and taxonomic signatures associated with resistome development over the first year of life in a large, prospective cohort in the United States. Shotgun metagenomic sequencing was used to profile both microbial composition and ARGs in stool samples collected at 6 weeks and 1 year of age from infants enrolled in the New Hampshire Birth Cohort Study. Negative binomial regression and statistical modeling was used to examine infant factors such as sex, delivery mode, feeding method, gestational age, antibiotic exposure, and infant gut microbiome composition in relation to the diversity and relative abundance of ARGs.Results: Metagenomic sequencing was performed on paired samples from 195 full term (at least 37 weeks’ gestation) and 15 late preterm (33-36 weeks’ gestation) infants. 6-week samples compared to 1-year samples had 4.37 times (95% CI: 3.54-5.39) the rate of harboring ARGs. The majority of ARGs that were at a greater relative abundance at 6 weeks (chi-squared p < 0.01) worked through the mechanism of antibiotic efflux (i.e., by pumping antibiotics out of the cell). The overall relative abundance of the resistome was strongly correlated with Proteobacteria (Spearman correlation = 78.9%) and specifically E. coli (62.2%) relative abundance in the gut microbiome. Among infant characteristics, delivery mode was most strongly associated with the diversity and relative abundance of ARGs. Infants born via cesarean delivery had a higher risk of harboring unique ARGs [relative risk = 1.12 (95% CI: 0.97 – 1.29)] as well as a having an increased risk for overall ARG relative abundance [relative risk = 1.43 (95% CI: 1.12 – 1.84)] at 1 year compared to infants born vaginally. Additionally, 6 specific ARGs were at a greater relative abundance in infants delivered by cesarean section compared to vaginally delivered infants across both time points. Conclusions: Our findings suggest that the developing infant gut resistome may be alterable by early-life exposures. Establishing the extent to which infant characteristics and early-life exposures impact the resistome can ultimately lead to interventions that decrease the transmission of ARGs and thus the possibility of antibiotic resistant life threatening infections.


2017 ◽  
Author(s):  
Sumayah F. Rahman ◽  
Matthew R. Olm ◽  
Michael J. Morowitz ◽  
Jillian F. Banfield

AbstractAntibiotic resistance in pathogens is extensively studied, yet little is known about how antibiotic resistance genes of typical gut bacteria influence microbiome dynamics. Here, we leverage genomes from metagenomes to investigate how genes of the premature infant gut resistome correspond to the ability of bacteria to survive under certain environmental and clinical conditions. We find that formula feeding impacts the resistome. Random forest models corroborated by statistical tests revealed that the gut resistome of formula-fed infants is enriched in class D beta-lactamase genes. Interestingly,Clostridium difficilestrains harboring this gene are at higher abundance in formula-fed infants compared toC. difficilelacking this gene. Organisms with genes for major facilitator superfamily drug efflux pumps have faster replication rates under all conditions, even in the absence of antibiotic therapy. Using a machine learning approach, we identified genes that are predictive of an organism’s direction of change in relative abundance after administration of vancomycin and cephalosporin antibiotics. The most accurate results were obtained by reducing annotated genomic data into five principal components classified by boosted decision trees. Among the genes involved in predicting if an organism increased in relative abundance after treatment are those that encode for subclass B2 beta-lactamases and transcriptional regulators of vancomycin resistance. This demonstrates that machine learning applied to genome-resolved metagenomics data can identify key genes for survival after antibiotics and predict how organisms in the gut microbiome will respond to antibiotic administration.ImportanceThe process of reconstructing genomes from environmental sequence data (genome-resolved metagenomics) allows for unique insight into microbial systems. We apply this technique to investigate how the antibiotic resistance genes of bacteria affect their ability to flourish in the gut under various conditions. Our analysis reveals that strain-level selection in formula-fed infants drives enrichment of beta-lactamase genes in the gut resistome. Using genomes from metagenomes, we built a machine learning model to predict how organisms in the gut microbial community respond to perturbation by antibiotics. This may eventually have clinical and industrial applications.


2021 ◽  
Vol 32 (Sup12) ◽  
pp. S8-S11
Author(s):  
Mary Gawthrop

As international travel restarts during the worldwide COVID-19 pandemic, travellers visiting certain regions remain at risk of illnesses such as typhoid and paratyphoid. Both diseases are spread by the faecal–oral route and are predominantly diseases of countries with inadequate sanitation and poor public health resources. Typhoid is endemic in South Asia and parts of South-East Asia, the Middle East, Central and South America and Africa. At-risk travellers need clear guidance on how to prevent infection and should be offered vaccination if recommended for their planned destinations.


2019 ◽  
Author(s):  
Michael Baumgartner ◽  
Florian Bayer ◽  
Katia R. Pfrunder-Cardozo ◽  
Angus Buckling ◽  
Alex R. Hall

AbstractCountering the rise of antibiotic resistant pathogens requires improved understanding of how resistance emerges and spreads in individual species, which are often embedded in complex microbial communities such as the human gut microbiome. Interactions with other microorganisms in such communities might suppress growth and resistance evolution of individual species (e.g. via resource competition), but could also potentially accelerate resistance evolution via horizontal transfer of resistance genes. It remains unclear how these different effects balance out, partly because it is difficult to observe them directly. Here, we used a gut microcosm approach to quantify the effect of three human gut microbiome communities on growth and resistance evolution of a focal strain of Escherichia coli. We found the resident microbial communities not only suppressed growth and colonization by focal E. coli, they also prevented it from evolving antibiotic resistance upon exposure to a beta-lactam antibiotic. With samples from all three human donors, our focal E. coli strain only evolved antibiotic resistance in the absence of the resident microbial community, even though we found resistance genes, including a highly effective resistance plasmid, in resident microbial communities. We identified physical constraints on plasmid transfer that can explain why our focal strain failed to acquire some of these beneficial resistance genes, and we found some chromosomal resistance mutations were only beneficial in the absence of the resident microbiota. This suggests, depending on in situ gene transfer dynamics, interactions with resident microbiota can inhibit antibiotic resistance evolution of individual species.


2004 ◽  
Vol 48 (10) ◽  
pp. 3996-4001 ◽  
Author(s):  
Yolanda Sáenz ◽  
Laura Briñas ◽  
Elena Domínguez ◽  
Joaquim Ruiz ◽  
Myriam Zarazaga ◽  
...  

ABSTRACT Seventeen multiple-antibiotic-resistant nonpathogenic Escherichia coli strains of human, animal, and food origins showed a wide variety of antibiotic resistance genes, many of them carried by class 1 and class 2 integrons. Amino acid changes in MarR and mutations in marO were identified for 15 and 14 E. coli strains, respectively.


2019 ◽  
Vol 12 (7) ◽  
pp. 984-993 ◽  
Author(s):  
Md. Abdus Sobur ◽  
Abdullah Al Momen Sabuj ◽  
Ripon Sarker ◽  
A. M. M. Taufiqur Rahman ◽  
S. M. Lutful Kabir ◽  
...  

Aim: The present study was carried out to determine load of total bacteria, Escherichia coli and Salmonella spp. in dairy farm and its environmental components. In addition, the antibiogram profile of the isolated bacteria having public health impact was also determined along with identification of virulence and resistance genes by polymerase chain reaction (PCR) under a one-health approach. Materials and Methods: A total of 240 samples of six types (cow dung - 15, milk - 10, milkers' hand wash - 10, soil - 10 water - 5, and vegetables - 10) were collected from four dairy farms. For enumeration, the samples were cultured onto plate count agar, eosin methylene blue, and xylose-lysine deoxycholate agar and the isolation and identification of the E. coli and Salmonella spp. were performed based on morphology, cultural, staining, and biochemical properties followed by PCR. The pathogenic strains of E. coli stx1, stx2, and rfbO157 were also identified through PCR. The isolates were subjected to antimicrobial susceptibility test against 12 commonly used antibiotics by disk diffusion method. Detection of antibiotic resistance genes ereA, tetA, tetB, and SHV were performed by PCR. Results: The mean total bacterial count, E. coli and Salmonella spp. count in the samples ranged from 4.54±0.05 to 8.65±0.06, 3.62±0.07 to 7.04±0.48, and 2.52±0.08 to 5.87±0.05 log colony-forming unit/g or ml, respectively. Out of 240 samples, 180 (75%) isolates of E. coli and 136 (56.67%) isolates of Salmonella spp. were recovered through cultural and molecular tests. Among the 180 E. coli isolates, 47 (26.11%) were found positive for the presence of all the three virulent genes, of which stx1 was the most prevalent (13.33%). Only three isolates were identified as enterohemorrhagic E. coli. Antibiotic sensitivity test revealed that both E. coli and Salmonella spp. were found highly resistant to azithromycin, tetracycline, erythromycin, oxytetracycline, and ertapenem and susceptible to gentamycin, ciprofloxacin, and imipenem. Among the four antibiotic resistance genes, the most observable was tetA (80.51-84.74%) in E. coli and Salmonella spp. and SHV genes were the lowest one (22.06-25%). Conclusion: Dairy farm and their environmental components carry antibiotic-resistant pathogenic E. coli and Salmonella spp. that are potential threat for human health which requires a one-health approach to combat the threat.


2021 ◽  
Author(s):  
Miguel Uyaguari

Abstract Background: Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. Results: Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%).The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14x104 gene copies/mL) followed by intI3 (4.97x103 gene copies/mL) while intI2 abundance remained low (6.4x101 gene copies/mL).Conclusions: The wastewater treatment plant successfully reduced the abundance of bacteria, DNA bacteriophages, and antibiotic resistance genes although many of them still remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S253-S253
Author(s):  
John Crane ◽  
Mark Sutton ◽  
Muhammad Cheema ◽  
Michael Olyer

Abstract Background The SOS response is a conserved response to DNA damage that is found in Gram negative and Gram-positive bacteria. When DNA damage is sustained and severe, activation of error-prone DNA polymerases can induce a higher mutation rate then normally observed, which is called the mutator phenotype or hypermutation. We previously showed that zinc blocked the hypermutation response induced by quinolone antibiotics and mitomycin C in E. coli and Klebsiella pneumoniae (Bunnell BE, Escobar JF, Bair KL, Sutton MD, Crane JK (2017). Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli. PLoS ONE 12(5): e0178303. https://doi.org/10.1371/journal.pone.0178303.) In addition to causing copying errors in DNA replication, Beaber et al. showed that induction of the SOS response increased the frequency of horizontal gene transfer into Vibrio cholerae, an organism naturally competent at uptake of extracellular DNA. (Beaber JW, Hochhut B, Waldor MK. 2003. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74.) Methods. In this study, we tested whether induction of the SOS response could induce transfer of antibiotic resistance from Enterobacter cloacae into E. coli, and whether zinc could inhibit that inter-species transfer of antibiotic resistance. Results. Ciprofloxacin, an inducer of the SOS response, increased the rate of transfer of an extended spectrum β-lactamase (ESBL) gene from Enterobacter into a susceptible E. coli strain. Zinc blocked SOS-induced horizontal transfer of §-lactamase into E. coli. Other divalent metals, such as iron and manganese, failed to inhibit these responses. Conclusion. In vitro assays showed that zinc blocked the ability of RecA to bind to ssDNA, an early step in the SOS response, suggesting the mechanism by which zinc blocks the SOS response. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
G. Terrance Walker ◽  
Julia Quan ◽  
Stephen G. Higgins ◽  
Nikhil Toraskar ◽  
Weizhong Chang ◽  
...  

ABSTRACT We developed a rapid high-throughput PCR test and evaluated highly antibiotic-resistant clinical isolates of Escherichia coli (n = 2,919), Klebsiella pneumoniae (n = 1,974), Proteus mirabilis (n = 1,150), and Pseudomonas aeruginosa (n = 1,484) for several antibiotic resistance genes for comparison with phenotypic resistance across penicillins, cephalosporins, carbapenems, aminoglycosides, trimethoprim-sulfamethoxazole, fluoroquinolones, and macrolides. The isolates originated from hospitals in North America (34%), Europe (23%), Asia (13%), South America (12%), Africa (7%), or Oceania (1%) or were of unknown origin (9%). We developed statistical methods to predict phenotypic resistance from resistance genes for 49 antibiotic-organism combinations, including gentamicin, tobramycin, ciprofloxacin, levofloxacin, trimethoprim-sulfamethoxazole, ertapenem, imipenem, cefazolin, cefepime, cefotaxime, ceftazidime, ceftriaxone, ampicillin, and aztreonam. Average positive predictive values for genotypic prediction of phenotypic resistance were 91% for E. coli, 93% for K. pneumoniae, 87% for P. mirabilis, and 92% for P. aeruginosa across the various antibiotics for this highly resistant cohort of bacterial isolates.


Sign in / Sign up

Export Citation Format

Share Document