scholarly journals Turing pattern design principles and their robustness

Author(s):  
Sean T. Vittadello ◽  
Thomas Leyshon ◽  
David Schnoerr ◽  
Michael P. H. Stumpf

Turing patterns have morphed from mathematical curiosities into highly desirable targets for synthetic biology. For a long time, their biological significance was sometimes disputed but there is now ample evidence for their involvement in processes ranging from skin pigmentation to digit and limb formation. While their role in developmental biology is now firmly established, their synthetic design has so far proved challenging. Here, we review recent large-scale mathematical analyses that have attempted to narrow down potential design principles. We consider different aspects of robustness of these models and outline why this perspective will be helpful in the search for synthetic Turing-patterning systems. We conclude by considering robustness in the context of developmental modelling more generally. This article is part of the theme issue ‘Recent progress and open frontiers in Turing’s theory of morphogenesis’.

2020 ◽  
Vol 10 (2) ◽  
pp. 103-106
Author(s):  
ASTEMIR ZHURTOV ◽  

Cruel and inhumane acts that harm human life and health, as well as humiliate the dignity, are prohibited in most countries of the world, and Russia is no exception in this issue. The article presents an analysis of the institution of responsibility for torture in the Russian Federation. The author comes to the conclusion that the current criminal law of Russia superficially and fragmentally regulates liability for torture, in connection with which the author formulated the proposals to define such act as an independent crime. In the frame of modern globalization, the world community pays special attention to the protection of human rights, in connection with which large-scale international standards have been created a long time ago. The Universal Declaration of Human Rights and other international acts enshrine prohibitions of cruel and inhumane acts that harm human life and health, as well as degrade the dignity.Considering the historical experience of the past, these standards focus on the prohibition of any kind of torture, regardless of the purpose of their implementation.


2021 ◽  
Vol 56 (1) ◽  
pp. 112-130 ◽  
Author(s):  
Haifeng Huang

AbstractFor a long time, since China’s opening to the outside world in the late 1970s, admiration for foreign socioeconomic prosperity and quality of life characterized much of the Chinese society, which contributed to dissatisfaction with the country’s development and government and a large-scale exodus of students and emigrants to foreign countries. More recently, however, overestimating China’s standing and popularity in the world has become a more conspicuous feature of Chinese public opinion and the social backdrop of the country’s overreach in global affairs in the last few years. This essay discusses the effects of these misperceptions about the world, their potential sources, and the outcomes of correcting misperceptions. It concludes that while the world should get China right and not misinterpret China’s intentions and actions, China should also get the world right and have a more balanced understanding of its relationship with the world.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 51
Author(s):  
Francisco Muñoz-Arriola ◽  
Tarik Abdel-Monem ◽  
Alessandro Amaranto

Common pool resource (CPR) management has the potential to overcome the collective action dilemma, defined as the tendency for individual users to exploit natural resources and contribute to a tragedy of the commons. Design principles associated with effective CPR management help to ensure that arrangements work to the mutual benefit of water users. This study contributes to current research on CPR management by examining the process of implementing integrated management planning through the lens of CPR design principles. Integrated management plans facilitate the management of a complex common pool resource, ground and surface water resources having a hydrological connection. Water governance structures were evaluated through the use of participatory methods and observed records of interannual changes in rainfall, evapotranspiration, and ground water levels across the Northern High Plains. The findings, documented in statutes, field interviews and observed hydrologic variables, point to the potential for addressing large-scale collective action dilemmas, while building on the strengths of local control and participation. The feasibility of a “bottom up” system to foster groundwater resilience was evidenced by reductions in groundwater depths of 2 m in less than a decade.


2021 ◽  
pp. 5-20
Author(s):  
M. V. Ershov

The global economy continues to grow, albeit mainly due to large-scale support measures from governments and regulators. Moreover, the latter are not sure about the prospects for such development, since the economies do not demonstrate the potential for independent growth. As a result, in order to stimulate it, regulators are forced to expand the range of their tools, mechanisms, approaches, otherwise the risks to the stability of the global financial and economic system increase. All this is happening against the background of negative rates, which have become virtually ubiquitous and persist for a long time. New growth records are being set in the stock markets, and their gap from the real economy is growing. A number of sectors are beginning to dominate, forming distortions and bubbles in the markets. In such conditions, the importance of digital money, ecosystems, etc. increases. Moreover, the faster and more efficiently regulators can integrate into these formats, the more successful business, the population, and the economy as a whole will be.


2021 ◽  
Vol 376 (1821) ◽  
pp. 20190765 ◽  
Author(s):  
Giovanni Pezzulo ◽  
Joshua LaPalme ◽  
Fallon Durant ◽  
Michael Levin

Nervous systems’ computational abilities are an evolutionary innovation, specializing and speed-optimizing ancient biophysical dynamics. Bioelectric signalling originated in cells' communication with the outside world and with each other, enabling cooperation towards adaptive construction and repair of multicellular bodies. Here, we review the emerging field of developmental bioelectricity, which links the field of basal cognition to state-of-the-art questions in regenerative medicine, synthetic bioengineering and even artificial intelligence. One of the predictions of this view is that regeneration and regulative development can restore correct large-scale anatomies from diverse starting states because, like the brain, they exploit bioelectric encoding of distributed goal states—in this case, pattern memories. We propose a new interpretation of recent stochastic regenerative phenotypes in planaria, by appealing to computational models of memory representation and processing in the brain. Moreover, we discuss novel findings showing that bioelectric changes induced in planaria can be stored in tissue for over a week, thus revealing that somatic bioelectric circuits in vivo can implement a long-term, re-writable memory medium. A consideration of the mechanisms, evolution and functionality of basal cognition makes novel predictions and provides an integrative perspective on the evolution, physiology and biomedicine of information processing in vivo . This article is part of the theme issue ‘Basal cognition: multicellularity, neurons and the cognitive lens’.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Yiwen Zhang ◽  
Yuanyuan Zhou ◽  
Xing Guo ◽  
Jintao Wu ◽  
Qiang He ◽  
...  

The K-means algorithm is one of the ten classic algorithms in the area of data mining and has been studied by researchers in numerous fields for a long time. However, the value of the clustering number k in the K-means algorithm is not always easy to be determined, and the selection of the initial centers is vulnerable to outliers. This paper proposes an improved K-means clustering algorithm called the covering K-means algorithm (C-K-means). The C-K-means algorithm can not only acquire efficient and accurate clustering results but also self-adaptively provide a reasonable numbers of clusters based on the data features. It includes two phases: the initialization of the covering algorithm (CA) and the Lloyd iteration of the K-means. The first phase executes the CA. CA self-organizes and recognizes the number of clusters k based on the similarities in the data, and it requires neither the number of clusters to be prespecified nor the initial centers to be manually selected. Therefore, it has a “blind” feature, that is, k is not preselected. The second phase performs the Lloyd iteration based on the results of the first phase. The C-K-means algorithm combines the advantages of CA and K-means. Experiments are carried out on the Spark platform, and the results verify the good scalability of the C-K-means algorithm. This algorithm can effectively solve the problem of large-scale data clustering. Extensive experiments on real data sets show that the accuracy and efficiency of the C-K-means algorithm outperforms the existing algorithms under both sequential and parallel conditions.


2002 ◽  
Vol 184 (1) ◽  
pp. 171-176 ◽  
Author(s):  
Patrick Mavingui ◽  
Margarita Flores ◽  
Xianwu Guo ◽  
Guillermo Dávila ◽  
Xavier Perret ◽  
...  

ABSTRACT Bacterial genomes are usually partitioned in several replicons, which are dynamic structures prone to mutation and genomic rearrangements, thus contributing to genome evolution. Nevertheless, much remains to be learned about the origins and dynamics of the formation of bacterial alternative genomic states and their possible biological consequences. To address these issues, we have studied the dynamics of the genome architecture in Rhizobium sp. strain NGR234 and analyzed its biological significance. NGR234 genome consists of three replicons: the symbiotic plasmid pNGR234a (536,165 bp), the megaplasmid pNGR234b (>2,000 kb), and the chromosome (>3,700 kb). Here we report that genome analyses of cell siblings showed the occurrence of large-scale DNA rearrangements consisting of cointegrations and excisions between the three replicons. As a result, four new genomic architectures have emerged. Three consisted of the cointegrates between two replicons: chromosome-pNGR234a, chromosome-pNGR234b, and pNGR234a-pNGR234b. The other consisted of a cointegrate of the three replicons (chromosome-pNGR234a-pNGR234b). Cointegration and excision of pNGR234a with either the chromosome or pNGR234b were studied and found to proceed via a Campbell-type mechanism, mediated by insertion sequence elements. We provide evidence showing that changes in the genome architecture did not alter the growth and symbiotic proficiency of Rhizobium derivatives.


2020 ◽  
Author(s):  
Ramon Viñas ◽  
Tiago Azevedo ◽  
Eric R. Gamazon ◽  
Pietro Liò

AbstractA question of fundamental biological significance is to what extent the expression of a subset of genes can be used to recover the full transcriptome, with important implications for biological discovery and clinical application. To address this challenge, we present GAIN-GTEx, a method for gene expression imputation based on Generative Adversarial Imputation Networks. In order to increase the applicability of our approach, we leverage data from GTEx v8, a reference resource that has generated a comprehensive collection of transcriptomes from a diverse set of human tissues. We compare our model to several standard and state-of-the-art imputation methods and show that GAIN-GTEx is significantly superior in terms of predictive performance and runtime. Furthermore, our results indicate strong generalisation on RNA-Seq data from 3 cancer types across varying levels of missingness. Our work can facilitate a cost-effective integration of large-scale RNA biorepositories into genomic studies of disease, with high applicability across diverse tissue types.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthew Joseph ◽  
Aaron Roth ◽  
Jonathan Ullman ◽  
Bo Waggoner

There are now several large scale deployments of differential privacy used to collect statistical information about users. However, these deployments periodically recollect the data and recompute the statistics using algorithms designed for a single use. As a result, these systems do not provide meaningful privacy guarantees over long time scales. Moreover, existing techniques to mitigate this effect do not apply in the “local model” of differential privacy that these systems use. In this paper, we introduce a new technique for local differential privacy that makes it possible to maintain up-to-date statistics over time, with privacy guarantees that degrade only in the number of changes in the underlying distribution rather than the number of collection periods. We use our technique for tracking a changing statistic in the setting where users are partitioned into an unknown collection of groups, and at every time period each user draws a single bit from a common (but changing) group-specific distribution. We also provide an application to frequency and heavy-hitter estimation.


Sign in / Sign up

Export Citation Format

Share Document