scholarly journals Are Genetic Interactions Influencing Gene Expression Evidence for Biological Epistasis or Statistical Artifacts?

2015 ◽  
Author(s):  
Alexandra E. Fish ◽  
John A. Capra ◽  
William S. Bush

AbstractThe importance of epistasis – or statistical interactions between genetic variants – to the development of complex disease in humans has long been controversial. Genome-wide association studies of statistical interactions influencing human traits have recently become computationally feasible and have identified many putative interactions. However, several factors that are difficult to address confound the statistical models used to detect interactions and make it unclear whether statistical interactions are evidence for true molecular epistasis. In this study, we investigate whether there is evidence for epistasis regulating gene expression after accounting for technical, statistical, and biological confounding factors that affect interaction studies. We identified 1,119 (FDR=5%) interactions within cis-regulatory regions that regulate gene expression in human lymphoblastoid cell lines, a tightly controlled, largely genetically determined phenotype. Approximately half of these interactions replicated in an independent dataset (363 of 803 tested). We then performed an exhaustive analysis of both known and novel confounders, including ceiling/floor effects, missing genotype combinations, haplotype effects, single variants tagged through linkage disequilibrium, and population stratification. Every replicated interaction could be explained by at least one of these confounders, and replication in independent datasets did not protect against this issue. Assuming the confounding factors provide a more parsimonious explanation for each interaction, we find it unlikely that cis-regulatory interactions contribute strongly to human gene expression. As this calls into question the relevance of interactions for other human phenotypes, the analytic framework used here will be useful for protecting future studies of epistasis against confounding.

2019 ◽  
Author(s):  
Jing Yang ◽  
Amanda McGovern ◽  
Paul Martin ◽  
Kate Duffus ◽  
Xiangyu Ge ◽  
...  

AbstractGenome-wide association studies have identified genetic variation contributing to complex disease risk. However, assigning causal genes and mechanisms has been more challenging because disease-associated variants are often found in distal regulatory regions with cell-type specific behaviours. Here, we collect ATAC-seq, Hi-C, Capture Hi-C and nuclear RNA-seq data in stimulated CD4+ T-cells over 24 hours, to identify functional enhancers regulating gene expression. We characterise changes in DNA interaction and activity dynamics that correlate with changes gene expression, and find that the strongest correlations are observed within 200 kb of promoters. Using rheumatoid arthritis as an example of T-cell mediated disease, we demonstrate interactions of expression quantitative trait loci with target genes, and confirm assigned genes or show complex interactions for 20% of disease associated loci, including FOXO1, which we confirm using CRISPR/Cas9.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 513
Author(s):  
Grace H. Yang ◽  
Danielle A. Fontaine ◽  
Sukanya Lodh ◽  
Joseph T. Blumer ◽  
Avtar Roopra ◽  
...  

Transcription factor 19 (TCF19) is a gene associated with type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in genome-wide association studies. Prior studies have demonstrated that Tcf19 knockdown impairs β-cell proliferation and increases apoptosis. However, little is known about its role in diabetes pathogenesis or the effects of TCF19 gain-of-function. The aim of this study was to examine the impact of TCF19 overexpression in INS-1 β-cells and human islets on proliferation and gene expression. With TCF19 overexpression, there was an increase in nucleotide incorporation without any change in cell cycle gene expression, alluding to an alternate process of nucleotide incorporation. Analysis of RNA-seq of TCF19 overexpressing cells revealed increased expression of several DNA damage response (DDR) genes, as well as a tightly linked set of genes involved in viral responses, immune system processes, and inflammation. This connectivity between DNA damage and inflammatory gene expression has not been well studied in the β-cell and suggests a novel role for TCF19 in regulating these pathways. Future studies determining how TCF19 may modulate these pathways can provide potential targets for improving β-cell survival.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jamie W. Robinson ◽  
Richard M. Martin ◽  
Spiridon Tsavachidis ◽  
Amy E. Howell ◽  
Caroline L. Relton ◽  
...  

AbstractGenome-wide association studies (GWAS) have discovered 27 loci associated with glioma risk. Whether these loci are causally implicated in glioma risk, and how risk differs across tissues, has yet to be systematically explored. We integrated multi-tissue expression quantitative trait loci (eQTLs) and glioma GWAS data using a combined Mendelian randomisation (MR) and colocalisation approach. We investigated how genetically predicted gene expression affects risk across tissue type (brain, estimated effective n = 1194 and whole blood, n = 31,684) and glioma subtype (all glioma (7400 cases, 8257 controls) glioblastoma (GBM, 3112 cases) and non-GBM gliomas (2411 cases)). We also leveraged tissue-specific eQTLs collected from 13 brain tissues (n = 114 to 209). The MR and colocalisation results suggested that genetically predicted increased gene expression of 12 genes were associated with glioma, GBM and/or non-GBM risk, three of which are novel glioma susceptibility genes (RETREG2/FAM134A, FAM178B and MVB12B/FAM125B). The effect of gene expression appears to be relatively consistent across glioma subtype diagnoses. Examining how risk differed across 13 brain tissues highlighted five candidate tissues (cerebellum, cortex, and the putamen, nucleus accumbens and caudate basal ganglia) and four previously implicated genes (JAK1, STMN3, PICK1 and EGFR). These analyses identified robust causal evidence for 12 genes and glioma risk, three of which are novel. The correlation of MR estimates in brain and blood are consistently low which suggested that tissue specificity needs to be carefully considered for glioma. Our results have implicated genes yet to be associated with glioma susceptibility and provided insight into putatively causal pathways for glioma risk.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiaowei Zhu ◽  
Weiyang Bai ◽  
Houfeng Zheng

AbstractOsteoporosis is a common skeletal disease, affecting ~200 million people around the world. As a complex disease, osteoporosis is influenced by many factors, including diet (e.g. calcium and protein intake), physical activity, endocrine status, coexisting diseases and genetic factors. In this review, we first summarize the discovery from genome-wide association studies (GWASs) in the bone field in the last 12 years. To date, GWASs and meta-analyses have discovered hundreds of loci that are associated with bone mineral density (BMD), osteoporosis, and osteoporotic fractures. However, the GWAS approach has sometimes been criticized because of the small effect size of the discovered variants and the mystery of missing heritability, these two questions could be partially explained by the newly raised conceptual models, such as omnigenic model and natural selection. Finally, we introduce the clinical use of GWAS findings in the bone field, such as the identification of causal clinical risk factors, the development of drug targets and disease prediction. Despite the fruitful GWAS discoveries in the bone field, most of these GWAS participants were of European descent, and more genetic studies should be carried out in other ethnic populations to benefit disease prediction in the corresponding population.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1181
Author(s):  
Alessandro Maglione ◽  
Miriam Zuccalà ◽  
Martina Tosi ◽  
Marinella Clerico ◽  
Simona Rolla

As a complex disease, Multiple Sclerosis (MS)’s etiology is determined by both genetic and environmental factors. In the last decade, the gut microbiome has emerged as an important environmental factor, but its interaction with host genetics is still unknown. In this review, we focus on these dual aspects of MS pathogenesis: we describe the current knowledge on genetic factors related to MS, based on genome-wide association studies, and then illustrate the interactions between the immune system, gut microbiome and central nervous system in MS, summarizing the evidence available from Experimental Autoimmune Encephalomyelitis mouse models and studies in patients. Finally, as the understanding of influence of host genetics on the gut microbiome composition in MS is in its infancy, we explore this issue based on the evidence currently available from other autoimmune diseases that share with MS the interplay of genetic with environmental factors (Inflammatory Bowel Disease, Rheumatoid Arthritis and Systemic Lupus Erythematosus), and discuss avenues for future research.


2018 ◽  
Vol 19 (12) ◽  
pp. 3857 ◽  
Author(s):  
Marica Meroni ◽  
Miriam Longo ◽  
Raffaela Rametta ◽  
Paola Dongiovanni

Alcoholic liver disease (ALD), a disorder caused by excessive alcohol consumption is a global health issue. More than two billion people consume alcohol in the world and about 75 million are classified as having alcohol disorders. ALD embraces a wide spectrum of hepatic lesions including steatosis, alcoholic steatohepatitis (ASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). ALD is a complex disease where environmental, genetic, and epigenetic factors contribute to its pathogenesis and progression. The severity of alcohol-induced liver disease depends on the amount, method of usage and duration of alcohol consumption as well as on age, gender, presence of obesity, and genetic susceptibility. Genome-wide association studies and candidate gene studies have identified genetic modifiers of ALD that can be exploited as non-invasive biomarkers, but which do not completely explain the phenotypic variability. Indeed, ALD development and progression is also modulated by epigenetic factors. The premise of this review is to discuss the role of genetic variants and epigenetic modifications, with particular attention being paid to microRNAs, as pathogenic markers, risk predictors, and therapeutic targets in ALD.


2021 ◽  
Author(s):  
Jianfeng Wu ◽  
Yanxi Chen ◽  
Panwen Wang ◽  
Richard J Caselli ◽  
Paul M Thompson ◽  
...  

Alzheimer's disease (AD) affects more than 1 in 9 people age 65 and older and becomes an urgent public health concern as the global population ages. In clinical practice, structural magnetic resonance imaging (sMRI) is the most accessible and widely used diagnostic imaging modality. Additionally, genome-wide association studies (GWAS) and transcriptomic, the study of gene expression, also play an important role in understanding AD etiology and progression. Sophisticated imaging genetics systems have been developed to discover genetic factors that consistently affect brain function and structure. However, most studies to date focused on the relationships between brain sMRI and GWAS or brain sMRI and transcriptomics. To our knowledge, few methods have been developed to discover and infer multimodal relationships among sMRI, GWAS, and transcriptomics. To address this, we propose a novel federated model, Genotype-Expression-Imaging Data Integration (GEIDI), to identify genetic and transcriptomic influences on brain sMRI measures. The relationships between brain imaging measures and gene expression are allowed to depend on a person's genotype at the single-nucleotide polymorphism (SNP) level, making the inferences adaptive and personalized. We performed extensive experiments on publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demonstrated our proposed method outperformed state-of-the-art expression quantitative trait loci (eQTL) methods for detecting genetic and transcriptomic factors related to AD and has stable performance when data are integrated from multiple sites. Our GEIDI approach may offer novel insights into the relationship among image biomarkers, genotypes, and gene expression and help discover novel genetic targets for potential AD drug treatments.


2018 ◽  
Author(s):  
Tom G. Richardson ◽  
Sean Harrison ◽  
Gibran Hemani ◽  
George Davey Smith

AbstractThe age of large-scale genome-wide association studies (GWAS) has provided us with an unprecedented opportunity to evaluate the genetic liability of complex disease using polygenic risk scores (PRS). In this study, we have analysed 162 PRS (P<5×l0 05) derived from GWAS and 551 heritable traits from the UK Biobank study (N=334,398). Findings can be investigated using a web application (http://mrcieu.mrsoftware.org/PRS_atlas/), which we envisage will help uncover both known and novel mechanisms which contribute towards disease susceptibility.To demonstrate this, we have investigated the results from a phenome-wide evaluation of schizophrenia genetic liability. Amongst findings were inverse associations with measures of cognitive function which extensive follow-up analyses using Mendelian randomization (MR) provided evidence of a causal relationship. We have also investigated the effect of multiple risk factors on disease using mediation and multivariable MR frameworks. Our atlas provides a resource for future endeavours seeking to unravel the causal determinants of complex disease.


2019 ◽  
Author(s):  
Tom G Richardson ◽  
Gibran Hemani ◽  
Tom R Gaunt ◽  
Caroline L Relton ◽  
George Davey Smith

AbstractBackgroundDeveloping insight into tissue-specific transcriptional mechanisms can help improve our understanding of how genetic variants exert their effects on complex traits and disease. By applying the principles of Mendelian randomization, we have undertaken a systematic analysis to evaluate transcriptome-wide associations between gene expression across 48 different tissue types and 395 complex traits.ResultsOverall, we identified 100,025 gene-trait associations based on conventional genome-wide corrections (P < 5 × 10−08) that also provided evidence of genetic colocalization. These results indicated that genetic variants which influence gene expression levels in multiple tissues are more likely to influence multiple complex traits. We identified many examples of tissue-specific effects, such as genetically-predicted TPO, NR3C2 and SPATA13 expression only associating with thyroid disease in thyroid tissue. Additionally, FBN2 expression was associated with both cardiovascular and lung function traits, but only when analysed in heart and lung tissue respectively.We also demonstrate that conducting phenome-wide evaluations of our results can help flag adverse on-target side effects for therapeutic intervention, as well as propose drug repositioning opportunities. Moreover, we find that exploring the tissue-dependency of associations identified by genome-wide association studies (GWAS) can help elucidate the causal genes and tissues responsible for effects, as well as uncover putative novel associations.ConclusionsThe atlas of tissue-dependent associations we have constructed should prove extremely valuable to future studies investigating the genetic determinants of complex disease. The follow-up analyses we have performed in this study are merely a guide for future research. Conducting similar evaluations can be undertaken systematically at http://mrcieu.mrsoftware.org/Tissue_MR_atlas/.


Sign in / Sign up

Export Citation Format

Share Document