scholarly journals Activation of SnRK2 by the Raf-like kinase ARK represents a common mechanism of ABA response in embryophytes

2020 ◽  
Author(s):  
Mousona Islam ◽  
Takumi Inoue ◽  
Mayuka Hiraide ◽  
Nobiza Khatun ◽  
Akida Jahan ◽  
...  

ABSTRACTThe Raf-like protein kinase ARK previously identified in the moss Physcomitrella patens acts as an upstream regulator of subgroup III SnRK2, the key regulator of abscisic acid (ABA) and abiotic stress responses. However, the mechanisms underlying activation of ARK by ABA and abiotic stress for the regulation of SnRK2 including the role of ABA receptor-associated group A PP2C (PP2C-A) are not understood. We identified Ser1029 as the phosphorylation site in the activation loop of ARK, which provided a possible mechanism for regulation of its activity. Analysis of transgenic ark lines expressing ARK-GFP with Ser1029-to-Ala mutation indicated that this replacement causes reductions in ABA-induced gene expression, stress tolerance and SnRK2 activity. Immunoblot analysis using an anti-phosphopeptide antibody indicated that ABA treatments rapidly stimulate Ser1029 phosphorylation in wild type. The phosphorylation profile of Ser1029 in ABA-hypersensitive ppabi1 lacking PP2C-A was similar to that in wild type, whereas little Ser1029 phosphorylation was observed in ABA-insensitive ark missense lines. Furthermore, newly isolated ppabi1 ark lines showed ABA-insensitive phenotypes similar to those of ark lines. These results indicate that ARK is a primary activator of SnRK2, preceding negative regulation by PP2C-A in bryophytes, which provides a prototypal mechanism for ABA and abiotic stress-responses in embryophytes.One sentence summaryPhysiological characterization of various moss mutants revealed a common mechanism for phytohormone responses under water deficit in all land plants.

2019 ◽  
Vol 20 (20) ◽  
pp. 5173 ◽  
Author(s):  
Ok Jin Hwang ◽  
Kyoungwhan Back

Melatonin has long been recognized as a positive signaling molecule and potent antioxidant in plants, which alleviates damage caused by adverse conditions such as salt, cold, and heat stress. In this study, we found a paradoxical role for melatonin in abiotic stress responses. Suppression of the serotonin N-acetyltransferase 2 (snat2) gene encoding the penultimate enzyme in melatonin biosynthesis led to simultaneous decreases in both melatonin and brassinosteroid (BR) levels, causing a semi-dwarf with erect leaf phenotype, typical of BR deficiency. Here, we further characterized snat2 rice in terms of grain morphology and abiotic stress tolerance, to determine whether snat2 rice exhibited characteristics similar to those of BR-deficient rice. As expected, the snat2 rice exhibited tolerance to multiple stress conditions including cadmium, salt, cold, and heat, as evidenced by decreased malondialdehyde (MDA) levels and increased chlorophyll levels, in contrast with SNAT2 overexpression lines, which were less tolerant to stress than wild type plants. In addition, the length and width of grain from snat2 plants were reduced relative to the wild type, which is reminiscent of BR deficiency in rice. Other melatonin-deficient mutant rice lines with suppressed BR synthesis (i.e., comt and t5h) also showed tolerance to salt and heat stress, whereas melatonin-deficient rice seedlings without decreased BR levels (i.e., tdc) failed to exhibit increased stress tolerance, suggesting that stress tolerance was increased not by melatonin deficiency alone, but by a melatonin deficiency-mediated decrease in BR.


2019 ◽  
Vol 20 (15) ◽  
pp. 3665 ◽  
Author(s):  
Xingji Peng ◽  
Xingguang Deng ◽  
Xiaoya Tang ◽  
Tinghong Tan ◽  
Dawei Zhang ◽  
...  

There are a number of highly conserved photosystem II light-harvesting antenna proteins in moss whose functions are unclear. Here, we investigated the involvement of chlorophyll-binding proteins, Lhcb6 and Lhcb5, in light-harvesting and photosynthesis regulation in Physcomitrella patens. Lhcb6 or Lhcb5 knock-out resulted in a disordered thylakoid arrangement, a decrease in the number of grana membranes, and an increase in the number of starch granule. The absence of Lhcb6 or Lhcb5 did not noticeably alter the electron transport rates. However, the non-photochemical quenching activity in the lhcb5 mutant was dramatically reduced when compared to wild-type or lhcb6 plants under abiotic stress. Lhcb5 plants were more sensitive to photo-inhibition, while lhcb6 plants showed little difference compared to the wild-type plants under high-light stress. Moreover, both mutants showed a growth malformation phenotype with reduced chlorophyll content in the gametophyte. These results suggested that Lhcb6 or Lhcb5 played a unique role in plant development, thylakoid organization, and photoprotection of PSII in Physcomitrella, especially when exposed to high light or osmotic environments.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Tie Liu ◽  
Adam D Longhurst ◽  
Franklin Talavera-Rauh ◽  
Samuel A Hokin ◽  
M Kathryn Barton

Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 650
Author(s):  
Jianwu Li ◽  
Maoyin Li ◽  
Shuaibing Yao ◽  
Guangqin Cai ◽  
Xuemin Wang

Patatin-related phospholipases (pPLAs) are acyl-hydrolyzing enzymes implicated in various processes, including lipid metabolism, signal transduction, plant growth and stress responses, but the function for many specific pPLAs in plants remains unknown. Here we determine the effect of patatin-related phospholipase A pPLAIIIγ on Arabidopsis response to abiotic stress. Knockout of pPLAIIIγ rendered plants more sensitive whereas overexpression of pPLAIIIγ enhanced plant tolerance to NaCl and drought in seed germination and seedling growth. The pPLAIIIγ-knockout and overexpressing seedlings displayed a lower and higher level of lysolipids and free fatty acids than that of wild-type plants in response to NaCl stress, respectively. These results indicate that pPLAIIIγ acts a positive regulator of salt and osmatic stress tolerance in Arabidopsis.


2019 ◽  
Vol 46 (9) ◽  
pp. 816
Author(s):  
Mario Rojas ◽  
Francisco Jimenez-Bremont ◽  
Claudia Villicaña ◽  
Laura Carreón-Palau ◽  
Bertha Olivia Arredondo-Vega ◽  
...  

Plant lipid transfer proteins (LTPs) exhibit the ability to transfer lipids between membranes in vitro, and have been implicated in diverse physiological processes associated to plant growth, reproduction, development, biotic and abiotic stress responses. However, their mode of action is not yet fully understood. To explore the functions of the OpsLTP1 gene encoding a LTP from cactus pear Opuntia streptacantha Lem., we generated transgenic Arabidopsis thaliana (L.) Heynh. plants to overexpress OpsLTP1 and contrasted our results with the loss-of-function mutant ltp3 from A. thaliana under abiotic stress conditions. The ltp3 mutant seeds showed impaired germination under salt and osmotic treatments, in contrast to OpsLTP1 overexpressing lines that displayed significant increases in germination rate. Moreover, stress recovery assays showed that ltp3 mutant seedlings were more sensitive to salt and osmotic treatments than wild-type plants suggesting that AtLTP3 is required for stress-induced responses, while the OpsLTP1 overexpressing line showed no significant differences. In addition, OpsLTP1 overexpressing and ltp3 mutant seeds stored lower amount of total lipids compared with wild-type seeds, showing changes primarily on 16C and 18C fatty acids. However, ltp3 mutant also lead changes in lipid profile and no over concrete lipids which may suggest a compensatory activation of other LTPs. Interestingly, linoleic acid (18:2ω6) was consistently increased in neutral, galactoglycerolipids and phosphoglycerolipids of OpsLTP1 overexpressing line indicating a role of OpsLTP1 in the modulation of lipid composition in A. thaliana.


2020 ◽  
Vol 71 (19) ◽  
pp. 5771-5785
Author(s):  
Pierre-Nicolas Boulc’h ◽  
Emma Caullireau ◽  
Elvina Faucher ◽  
Maverick Gouerou ◽  
Amandine Guérin ◽  
...  

Abstract Plant life relies on complex arrays of environmental stress sensing and signalling mechanisms. Extremophile plants develop and grow in harsh environments with extremes of cold, heat, drought, desiccation, or salinity, which have resulted in original adaptations. In accordance with their polyphyletic origins, extremophile plants likely possess core mechanisms of plant abiotic stress signalling. However, novel properties or regulations may have emerged in the context of extremophile adaptations. Comparative omics of extremophile genetic models, such as Arabidopsis lyrata, Craterostigma plantagineum, Eutrema salsugineum, and Physcomitrella patens, reveal diverse strategies of sensing and signalling that lead to a general improvement in abiotic stress responses. Current research points to putative differences of sensing and emphasizes significant modifications of regulatory mechanisms, at the level of secondary messengers (Ca2+, phospholipids, reactive oxygen species), signal transduction (intracellular sensors, protein kinases, transcription factors, ubiquitin-mediated proteolysis) or signalling crosstalk. Involvement of hormone signalling, especially ABA signalling, cell homeostasis surveillance, and epigenetic mechanisms, also shows that large-scale gene regulation, whole-plant integration, and probably stress memory are important features of adaptation to extreme conditions. This evolutionary and functional plasticity of signalling systems in extremophile plants may have important implications for plant biotechnology, crop improvement, and ecological risk assessment under conditions of climate change.


2006 ◽  
Vol 25 (5) ◽  
pp. 475-488 ◽  
Author(s):  
Sung Hyun Cho ◽  
Quoc Truong Hoang ◽  
Yoon Young Kim ◽  
Hyun Young Shin ◽  
Sung Han Ok ◽  
...  

2020 ◽  
Vol 117 (32) ◽  
pp. 19245-19253 ◽  
Author(s):  
Soumyadip Sahu ◽  
Zhenzhen Wang ◽  
Xinfu Jiao ◽  
Chunfang Gu ◽  
Nikolaus Jork ◽  
...  

Regulation of enzymatic 5′ decapping of messenger RNA (mRNA), which normally commits transcripts to their destruction, has the capacity to dynamically reshape the transcriptome. For example, protection from 5′ decapping promotes accumulation of mRNAs into processing (P) bodies—membraneless, biomolecular condensates. Such compartmentalization of mRNAs temporarily removes them from the translatable pool; these repressed transcripts are stabilized and stored until P-body dissolution permits transcript reentry into the cytosol. Here, we describe regulation of mRNA stability and P-body dynamics by the inositol pyrophosphate signaling molecule 5-InsP7(5-diphosphoinositol pentakisphosphate). First, we demonstrate 5-InsP7inhibits decapping by recombinant NUDT3 (Nudix [nucleoside diphosphate linked moiety X]-type hydrolase 3) in vitro. Next, in intact HEK293 and HCT116 cells, we monitored the stability of a cadre of NUDT3 mRNA substrates following CRISPR-Cas9 knockout ofPPIP5Ks(diphosphoinositol pentakisphosphate 5-kinases type 1 and 2, i.e.,PPIP5KKO), which elevates cellular 5-InsP7levels by two- to threefold (i.e., within the physiological rheostatic range). ThePPIP5KKO cells exhibited elevated levels of NUDT3 mRNA substrates and increased P-body abundance. Pharmacological and genetic attenuation of 5-InsP7synthesis in the KO background reverted both NUDT3 mRNA substrate levels and P-body counts to those of wild-type cells. Furthermore, liposomal delivery of a metabolically resistant 5-InsP7analog into wild-type cells elevated levels of NUDT3 mRNA substrates and raised P-body abundance. In the context that cellular 5-InsP7levels normally fluctuate in response to changes in the bioenergetic environment, regulation of mRNA structure by this inositol pyrophosphate represents an epitranscriptomic control process. The associated impact on P-body dynamics has relevance to regulation of stem cell differentiation, stress responses, and, potentially, amelioration of neurodegenerative diseases and aging.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 962
Author(s):  
Maciej Jerzy Bernacki ◽  
Anna Rusaczonek ◽  
Weronika Czarnocka ◽  
Stanisław Karpiński

Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document