scholarly journals Rapid Assembly and Screening of Multivalent Immune Cell-Redirecting Therapies for Leukemia

2020 ◽  
Author(s):  
Priscilla Do ◽  
Lacey A Perdue ◽  
Andrew Chyong ◽  
Rae Hunter ◽  
Jodi Dougan ◽  
...  

ABSTRACTTherapies that bind with immune cells and redirect their cytotoxic activity towards diseased cells represent a promising and versatile approach to immunotherapy with applications in cancer, lupus, and other diseases; traditional methods for discovering these therapies, however, are often time-intensive and lack the throughput of related target-based discovery approaches. Inspired by the observation that the cytokine, IL-12, can enhance antileukemic activity of the clinically approved T cell redirecting therapy, blinatumomab, here we describe the structure and assembly of a chimeric immune cell-redirecting agent which redirects the lytic activity of primary human T cells towards leukemic B cells and simultaneously co-targets the delivery of T cell-stimulating IL-12. We further describe a novel method for the parallel assembly of compositionally diverse libraries of these bi-specific T cell engaging cytokines (BiTEokines) and their high-throughput phenotypic screening, requiring just days for hit identification and the analysis of structure-function relationships. Using this approach, we identified CD19 × CD3 × IL12 compounds that exhibit ex vivo lytic activity comparable to current FDA-approved therapies for leukemia and correlated drug treatment with specific cell-cell contact, cytokine delivery, and leukemia cell lysis. Given the modular nature of these multivalent compounds and their rapid assembly/screening, we anticipate facile extension of this therapeutic approach to a wide range of immune cells, diseased cells, and soluble protein combinations in the future.

2017 ◽  
Vol 313 (2) ◽  
pp. L406-L415 ◽  
Author(s):  
Gene T. Yocum ◽  
Damian L. Turner ◽  
Jennifer Danielsson ◽  
Matthew B. Barajas ◽  
Yi Zhang ◽  
...  

Emerging evidence indicates that hypnotic anesthetics affect immune function. Many anesthetics potentiate γ-aminobutyric acid A receptor (GABAAR) activation, and these receptors are expressed on multiple subtypes of immune cells, providing a potential mechanistic link. Like immune cells, airway smooth muscle (ASM) cells also express GABAARs, particularly isoforms containing α4-subunits, and activation of these receptors leads to ASM relaxation. We sought to determine if GABAAR signaling modulates the ASM contractile and inflammatory phenotype of a murine allergic asthma model utilizing GABAAR α4-subunit global knockout (KO; Gabra40/0) mice. Wild-type (WT) and Gabra4 KO mice were sensitized with house dust mite (HDM) antigen or exposed to PBS intranasally 5 days/wk for 3 wk. Ex vivo tracheal rings from HDM-sensitized WT and Gabra4 KO mice exhibited similar magnitudes of acetylcholine-induced contractile force and isoproterenol-induced relaxation ( P = not significant; n = 4). In contrast, in vivo airway resistance (flexiVent) was significantly increased in Gabra4 KO mice ( P < 0.05, n = 8). Moreover, the Gabra4 KO mice demonstrated increased eosinophilic lung infiltration ( P < 0.05; n = 4) and increased markers of lung T-cell activation/memory (CD62L low, CD44 high; P < 0.01, n = 4). In vitro, Gabra4 KO CD4+ cells produced increased cytokines and exhibited increased proliferation after stimulation of the T-cell receptor as compared with WT CD4+ cells. These data suggest that the GABAAR α4-subunit plays a role in immune cell function during allergic lung sensitization. Thus GABAAR α4-subunit-specific agonists have the therapeutic potential to treat asthma via two mechanisms: direct ASM relaxation and inhibition of airway inflammation.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 598
Author(s):  
Valérie Janelle ◽  
Jean-Sébastien Delisle

Over the last decades, cellular immunotherapy has revealed its curative potential. However, inherent physiological characteristics of immune cells can limit the potency of this approach. Best defined in T cells, dysfunction associated with terminal differentiation, exhaustion, senescence, and activation-induced cell death, undermine adoptive cell therapies. In this review, we concentrate on how the multiple mechanisms that articulate the various forms of immune dysfunction impact cellular therapies primarily involving conventional T cells, but also other lymphoid subtypes. The repercussions of immune cell dysfunction across the full life cycle of cell therapy, from the source material, during manufacturing, and after adoptive transfer, are discussed, with an emphasis on strategies used during ex vivo manipulations to limit T-cell dysfunction. Applicable to cellular products prepared from native and unmodified immune cells, as well as genetically engineered therapeutics, the understanding and potential modulation of dysfunctional features are key to the development of improved cellular immunotherapies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A637-A637
Author(s):  
Manoj Chelvanambi ◽  
Ronald Fecek ◽  
Jennifer Taylor ◽  
Walter Storkus

BackgroundThe degree of immune infiltration in tumors, especially CD8+ T cells, greatly impacts patient disease course and response to interventional immunotherapy. Hence, enhancement of TIL prevalence is a preferred clinical endpoint, one that may be achieved via administration of agents that normalize the tumor vasculature (VN) leading to improved immune cell recruitment and/or that induce the development of local tertiary lymphoid structures (TLS) within the tumor microenvironment (TME).MethodsLow-dose STING agonist ADU S-100 (5 μg/mouse) was delivered intratumorally to established s.c. B16.F10 melanomas on days 10, 14 and 17 post-tumor inoculation under an IACUC-approved protocol. Treated and control, untreated tumors were isolated at various time points to assess transcriptional changes associated with VN and TLS formation via qPCR, with corollary immune cell composition changes determined using flow cytometry and immunofluorescence microscopy. In vitro assays were performed on CD11c+ BMDCs treated with 2.5 μg/mL ADU S-100 (vs PBS control) and associated transcriptional changes analyzed via qPCR or profiled using DNA microarrays. For TCRβ-CDR3 analyses, CDR3 was sequenced from gDNA isolated from enzymatically digested tumors and splenocytes.ResultsWe report that activation of STING within the TME leads to slowed melanoma growth in association with increased production of angiostatic factors including Tnfsf15 (Vegi), Cxcl10 and Angpt1, and TLS inducing factors including Ccl19, Ccl21, Lta, Ltb and Tnfsf14 (Light). Therapeutic responses from intratumoral STING activation were characterized by increased vascular normalization (VN), enhanced tumor infiltration by CD8+ T cells and CD11c+ DCs and local TLS neo-genesis, all of which were dependent on host expression of STING. Consistent with a central role for DC in TLS formation, ex vivo ADU S-100-activated mCD11c+ DCs also exhibited upregulated expression of TLS promoting factors including lymphotoxin-α (LTA), IL-36, inflammatory chemokines and type I interferons. TLS formation was associated with the development of a therapeutic TIL TCR repertoire enriched in T cell clonotypes uniquely detected within the tumor but not the peripheral circulation in support or local T cell cross-priming within the TME.ConclusionsOur data support the premise that i.t. delivery of STING agonist promotes a pro-inflammatory TME in support of VN and TLS formation, leading to the local expansion of unique TIL repertoire in association with superior anti-melanoma efficacy.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Mohamad Hatahet ◽  
Olga Y Gasheva ◽  
Valorie L Chiasson ◽  
Piyali Chatterjee ◽  
Kelsey R Bounds ◽  
...  

Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by vascular endothelial dysfunction and excessive immunity and inflammation. Activation of the dsRNA receptor Toll-like receptor 3 (TLR3) or the ssRNA receptor TLR7 elicits a pregnancy-dependent PE-like syndrome in mice by inducing a pro-inflammatory immune response. CD74 (MHC Class II invariant chain) acts as a chaperone for MHC Class II surface expression on immune cells during antigen presentation and is cleaved into Class II-Associated Invariant Peptide (CLIP) following polyclonal activation of immune cell TLRs. The presence of CLIP in the groove of MHC Class II prevents T cell-dependent death leading to persistent immune cell activation. We hypothesized that genetic deletion of CD74 and subsequent depletion of CLIP on immune cells prevents TLR-induced immune responses and the development of PE in mice. Pregnant WT and CD74 KO mice were given i.p. injections of normal saline (P), poly I:C (TLR3 agonist; P-PIC), or R837 (TLR7 agonist; P-R837) on gestational days 13, 15, and 17 and euthanized on day 18. P-PIC and P-R837 WT mice had significantly increased splenic levels of pro-inflammatory CD3+/gd T cells and plasma levels of the gd T cell-derived cytokines IFNg, TNFa, and IL-17 compared to P WT mice whereas P-PIC and P-R837 CD74 KO mice had significantly increased anti-inflammatory CD3+/gd T cells and no significant increases in plasma IFNg, TNFa, and IL-17 levels. P-PIC and P-R837 CD74 KO mice did not develop the hypertension (gd17 SBP in mmHg: P WT=102±3, P CD74 KO=100±3, P-PIC WT=147±4*, P-PIC CD74 KO=95±3, P-R837 WT=133±2*, P-R837 CD74 KO=97±1; *p<0.05 vs. P WT), endothelial dysfunction, proteinuria, or placental necrosis seen in P-PIC and P-R837 WT mice. In conclusion, CD74 is crucial for the development of TLR-induced PE-like symptoms in mice and CD74/CLIP depletion may be a promising therapeutic target for women with PE.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Tomohiro Aoki ◽  
Lauren C. Chong ◽  
Katsuyoshi Takata ◽  
Katy Milne ◽  
Elizabeth Chavez ◽  
...  

Introduction: Classic Hodgkin lymphoma (CHL) features a unique crosstalk between malignant cells and different types of normal immune cells in the tumor-microenvironment (TME). On the basis of histomorphologic and immunophenotypic features of the malignant Hodgkin and Reed-Sternberg (HRS) cells and infiltrating immune cells, four histological subtypes of CHL are recognized: Nodular sclerosing (NS), Mixed cellularity, Lymphocyte-rich (LR) and Lymphocyte-depleted CHL. Recently, our group described the high abundance of various types of immunosuppressive CD4+ T cells including LAG3+ and/or CTLA4+ cells in the TME of CHL using single cell RNA sequencing (scRNAseq). However, the TME of LR-CHL has not been well characterized due to the rarity of the disease. In this study, we aimed at characterizing the immune cell profile of LR-CHL at single cell resolution. METHODS: We performed scRNAseq on cell suspensions collected from lymph nodes of 28 primary CHL patients, including 11 NS, 9 MC and 8 LR samples, with 5 reactive lymph nodes (RLN) serving as normal controls. We merged the expression data from all cells (CHL and RLN) and performed batch correction and normalization. We also performed single- and multi-color immunohistochemistry (IHC) on tissue microarray (TMA) slides from the same patients. In addition, an independent validation cohort of 31 pre-treatment LR-CHL samples assembled on a TMA, were also evaluated by IHC. Results: A total of 23 phenotypic cell clusters were identified using unsupervised clustering (PhenoGraph). We assigned each cluster to a cell type based on the expression of genes described in published transcriptome data of sorted immune cells and known canonical markers. While most immune cell phenotypes were present in all pathological subtypes, we observed a lower abundance of regulatory T cells (Tregs) in LR-CHL in comparison to the other CHL subtypes. Conversely, we found that B cells were enriched in LR-CHL when compared to the other subtypes and specifically, all four naïve B-cell clusters were quantitatively dominated by cells derived from the LR-CHL samples. T follicular helper (TFH) cells support antibody response and differentiation of B cells. Our data show the preferential enrichment of TFH in LR-CHL as compared to other CHL subtypes, but TFH cells were still less frequent compared to RLN. Of note, Chemokine C-X-C motif ligand 13 (CXCL13) was identified as the most up-regulated gene in LR compared to RLN. CXCL13, which is a ligand of C-X-C motif receptor 5 (CXCR5) is well known as a B-cell attractant via the CXCR5-CXCL13 axis. Analyzing co-expression patterns on the single cell level revealed that the majority of CXCL13+ T cells co-expressed PD-1 and ICOS, which is known as a universal TFH marker, but co-expression of CXCR5, another common TFH marker, was variable. Notably, classical TFH cells co-expressing CXCR5 and PD-1 were significantly enriched in RLN, whereas PD-1+ CXCL13+ CXCR5- CD4+ T cells were significantly enriched in LR-CHL. These co-expression patterns were validated using flow cytometry. Moreover, the expression of CXCR5 on naïve B cells in the TME was increased in LR-CHL compared to the other CHL subtypes We next sought to understand the spatial relationship between CXCL13+ T cells and malignant HRS cells. IHC of all cases revealed that CXCL13+ T cells were significantly enriched in the LR-CHL TME compared to other subtypes of CHL, and 46% of the LR-CHL cases showed CXCL13+ T cell rosettes closely surrounding HRS cells. Since PD-1+ T cell rosettes are known as a specific feature of LR-CHL, we confirmed co-expression of PD-1 in the rosetting cells by IHC in these cases. Conclusions: Our results reveal a unique TME composition in LR-CHL. LR-CHL seems to be distinctly characterized among the CHL subtypes by enrichment of CXCR5+ naïve B cells and CD4+ CXCL13+ PD-1+ T cells, indicating the importance of the CXCR5-CXCL13 axis in the pathogenesis of LR-CHL. Figure Disclosures Savage: BeiGene: Other: Steering Committee; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie: Honoraria; Roche (institutional): Research Funding; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie, Servier: Consultancy. Scott:Janssen: Consultancy, Research Funding; Celgene: Consultancy; NanoString: Patents & Royalties: Named inventor on a patent licensed to NanoString, Research Funding; NIH: Consultancy, Other: Co-inventor on a patent related to the MCL35 assay filed at the National Institutes of Health, United States of America.; Roche/Genentech: Research Funding; Abbvie: Consultancy; AstraZeneca: Consultancy. Steidl:AbbVie: Consultancy; Roche: Consultancy; Curis Inc: Consultancy; Juno Therapeutics: Consultancy; Bayer: Consultancy; Seattle Genetics: Consultancy; Bristol-Myers Squibb: Research Funding.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5856
Author(s):  
Myung-Chul Kim ◽  
Zeng Jin ◽  
Ryan Kolb ◽  
Nicholas Borcherding ◽  
Jonathan Alexander Chatzkel ◽  
...  

Several clinicopathological features of clear cell renal cell carcinomas (ccRCC) contribute to make an “atypical” cancer, including resistance to chemotherapy, sensitivity to anti-angiogenesis therapy and ICIs despite a low mutational burden, and CD8+ T cell infiltration being the predictor for poor prognosis–normally CD8+ T cell infiltration is a good prognostic factor in cancer patients. These “atypical” features have brought researchers to investigate the molecular and immunological mechanisms that lead to the increased T cell infiltrates despite relatively low molecular burdens, as well as to decipher the immune landscape that leads to better response to ICIs. In the present study, we summarize the past and ongoing pivotal clinical trials of immunotherapies for ccRCC, emphasizing the potential molecular and cellular mechanisms that lead to the success or failure of ICI therapy. Single-cell analysis of ccRCC has provided a more thorough and detailed understanding of the tumor immune microenvironment and has facilitated the discovery of molecular biomarkers from the tumor-infiltrating immune cells. We herein will focus on the discussion of some major immune cells, including T cells and tumor-associated macrophages (TAM) in ccRCC. We will further provide some perspectives of using molecular and cellular biomarkers derived from these immune cell types to potentially improve the response rate to ICIs in ccRCC patients.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Prashant Rajbhandari ◽  
Douglas Arneson ◽  
Sydney K Hart ◽  
In Sook Ahn ◽  
Graciel Diamante ◽  
...  

Immune cells are vital constituents of the adipose microenvironment that influence both local and systemic lipid metabolism. Mice lacking IL10 have enhanced thermogenesis, but the roles of specific cell types in the metabolic response to IL10 remain to be defined. We demonstrate here that selective loss of IL10 receptor α in adipocytes recapitulates the beneficial effects of global IL10 deletion, and that local crosstalk between IL10-producing immune cells and adipocytes is a determinant of thermogenesis and systemic energy balance. Single Nuclei Adipocyte RNA-sequencing (SNAP-seq) of subcutaneous adipose tissue defined a metabolically-active mature adipocyte subtype characterized by robust expression of genes involved in thermogenesis whose transcriptome was selectively responsive to IL10Rα deletion. Furthermore, single-cell transcriptomic analysis of adipose stromal populations identified lymphocytes as a key source of IL10 production in response to thermogenic stimuli. These findings implicate adaptive immune cell-adipocyte communication in the maintenance of adipose subtype identity and function.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Marlies P Noz ◽  
Siroon Bekkering ◽  
Laszlo Groh ◽  
Tim MJ Nielen ◽  
Evert JP Lamfers ◽  
...  

Atherosclerosis is the major cause of cardiovascular disease (CVD). Monocyte-derived macrophages are the most abundant immune cells in atherosclerotic plaques. In patients with atherosclerotic CVD, leukocytes have a hyperinflammatory phenotype. We hypothesize that immune cell reprogramming in these patients occurs at the level of myeloid progenitors. We included 13 patients with coronary artery disease due to severe atherosclerosis and 13 subjects without atherosclerosis in an exploratory study. Cytokine production capacity after ex vivo stimulation of peripheral blood mononuclear cells (MNCs) and bone marrow MNCs was higher in patients with atherosclerosis. In BM-MNCs this was associated with increased glycolysis and oxidative phosphorylation. The BM composition was skewed towards myelopoiesis and transcriptome analysis of HSC/GMP cell populations revealed enrichment of neutrophil- and monocyte-related pathways. These results show that in patients with atherosclerosis, activation of innate immune cells occurs at the level of myeloid progenitors, which adds exciting opportunities for novel treatment strategies.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2661
Author(s):  
Matti Ullah ◽  
Warda Aoudjeghout ◽  
Cynthia Pimpie ◽  
Marc Pocard ◽  
Massoud Mirshahi

Cancer is a result of “aggressive” division and uncontrolled proliferation of the abnormal cells that survive attack by immune cells. We investigated the expression of HLA-G and PD-L1 with the different stages of cancer cell division along with their role in the interaction of immune cells in vitro. Ovarian cancer (OVCAR-3) and chronic myeloid leukemia cell line (K-562) are used for this study. The correlation of protein expression with percentage of cells in each phase (G1, S and G2 phase) was evaluated through FACS. Cells were synchronized in G1, G2 and mitotic phase to evaluate gene (RT-qPCR) and protein expression (FACS). Real-time immune cell attack (RTICA) analysis with PBMCs (peripheral blood mono-nuclear cells) and cancer cells were performed. We found that cells expressing higher levels of HLA-G and PD-L1 are mainly in G2 phase and those expressing lower levels are mainly in G1 phase. Evidently, the higher expression of the two proteins was observed when synchronized in mitotic phase as compared to low expression when synchronized in G1 phase. RTICA analysis showed the presence of HLA-G delayed the lysis of the cells. In conclusion, the cancer cell can escape from immune cells in division stage that suggests the impact of mitosis index for cancer immunotherapy.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Guohe Song ◽  
Yang Shi ◽  
Meiying Zhang ◽  
Shyamal Goswami ◽  
Saifullah Afridi ◽  
...  

AbstractDiverse immune cells in the tumor microenvironment form a complex ecosystem, but our knowledge of their heterogeneity and dynamics within hepatocellular carcinoma (HCC) still remains limited. To assess the plasticity and phenotypes of immune cells within HBV/HCV-related HCC microenvironment at single-cell level, we performed single-cell RNA sequencing on 41,698 immune cells from seven pairs of HBV/HCV-related HCC tumors and non-tumor liver tissues. We combined bio-informatic analyses, flow cytometry, and multiplex immunohistochemistry to assess the heterogeneity of different immune cell subsets in functional characteristics, transcriptional regulation, phenotypic switching, and interactions. We identified 29 immune cell subsets of myeloid cells, NK cells, and lymphocytes with unique transcriptomic profiles in HCC. A highly complex immunological network was shaped by diverse immune cell subsets that can transit among different states and mutually interact. Notably, we identified a subset of M2 macrophage with high expression of CCL18 and transcription factor CREM that was enriched in advanced HCC patients, and potentially participated in tumor progression. We also detected a new subset of activated CD8+ T cells highly expressing XCL1 that correlated with better patient survival rates. Meanwhile, distinct transcriptomic signatures, cytotoxic phenotypes, and evolution trajectory of effector CD8+ T cells from early-stage to advanced HCC were also identified. Our study provides insight into the immune microenvironment in HBV/HCV-related HCC and highlights novel macrophage and T-cell subsets that could be further exploited in future immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document