scholarly journals Salinity stress-induced modification of pectin activates stress signaling pathways and requires HERK/THE and FER to attenuate the response

2020 ◽  
Author(s):  
Nora Gigli-Bisceglia ◽  
Eva Van Zelm ◽  
Wenying Huo ◽  
Jasper Lamers ◽  
Christa Testerink

AbstractSoil salinity is an increasing worldwide problem for agriculture, affecting plant growth and yield. In our attempt to understand the molecular mechanisms activated in response to salt in plants, we investigated the Catharanthus roseus Receptor like Kinase 1 Like (CrRLK1L) family, which contains well described sensors previously shown to be involved in maintaining and sensing the structural integrity of the cell walls. We have observed that herk1the1-4 double mutants, lacking the function of the Arabidopsis thaliana Receptor like Kinase HERKULES1 combined with a gain of function allele of THESEUS1, phenocopied the phenotypes previously reported in plants lacking FERONIA (FER) function. We report that both fer-4 and herk1the1-4 mutants respond strongly to salt application, resulting in a more intense activation of early and late stress responses. We also show that salt triggers de-methyl esterification of loosely bound pectins. These cell wall modifications might be partly responsible for the activation of the signaling pathways required to activate salt stress responses. In fact, by adding calcium chloride or by chemically inhibiting pectin methyl esterase (PME) activity we observed reduced activation of the early signaling protein Mitogen Activated Protein Kinase 6 (MPK6) as well as a reduced amplitude in salt-induced marker gene induction. We show that MPK6 is required for the full induction of the salt-induced gene expression markers we tested. However, the sodium specific root halotropism response is likely regulated by a different branch of the pathway being independent of MPK6 or calcium application but influenced by the cell wall sensors FER/HERK1/THE1-4 and PME activity. We hypothesize a model where salt-triggered modification of pectin requires the functionality of FER alone or the HERK1/THE1 combination to attenuate salt responses. Collectively, our results show the complexity of salt stress responses and salt sensing mechanisms and their connection to cell wall modifications, likely being in part responsible for the response phenotypes observed in salt treated plants.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12683
Author(s):  
Rui Yang ◽  
Zhifen Yang ◽  
Ze Peng ◽  
Fang He ◽  
Luxi Shi ◽  
...  

Background Soil salinity is a major environmental stress that restricts crop growth and yield. Methods Here, crucial proteins and biological pathways were investigated under salt-stress and recovery conditions in Tritipyrum ‘Y1805’ using the data-independent acquisition proteomics techniques to explore its salt-tolerance mechanism. Results In total, 44 and 102 differentially expressed proteins (DEPs) were identified in ‘Y1805’ under salt-stress and recovery conditions, respectively. A proteome-transcriptome-associated analysis revealed that the expression patterns of 13 and 25 DEPs were the same under salt-stress and recovery conditions, respectively. ‘Response to stimulus’, ‘antioxidant activity’, ‘carbohydrate metabolism’, ‘amino acid metabolism’, ‘signal transduction’, ‘transport and catabolism’ and ‘biosynthesis of other secondary metabolites’ were present under both conditions in ‘Y1805’. In addition, ‘energy metabolism’ and ‘lipid metabolism’ were recovery-specific pathways, while ‘antioxidant activity’, and ‘molecular function regulator’ under salt-stress conditions, and ‘virion’ and ‘virion part’ during recovery, were ‘Y1805’-specific compared with the salt-sensitive wheat ‘Chinese Spring’. ‘Y1805’ contained eight specific DEPs related to salt-stress responses. The strong salt tolerance of ‘Y1805’ could be attributed to the strengthened cell walls, reactive oxygen species scavenging, osmoregulation, phytohormone regulation, transient growth arrest, enhanced respiration, transcriptional regulation and error information processing. These data will facilitate an understanding of the molecular mechanisms of salt tolerance and aid in the breeding of salt-tolerant wheat.


2019 ◽  
Vol 20 (5) ◽  
pp. 1176 ◽  
Author(s):  
Wenying Gao ◽  
Zheng Feng ◽  
Qingqing Bai ◽  
Jinjin He ◽  
Yingjuan Wang

Melatonin (MT; N-acetyl-5-methoxytryptamine) is a pleiotropic signaling molecule that has been demonstrated to play an important role in plant growth, development, and regulation of environmental stress responses. Studies have been conducted on the role of the exogenous application of MT in a few species, but the potential mechanisms of MT-mediated stress tolerance under salt stress are still largely unknown. In this study, naked oat seedlings under salt stress (150 mM NaCl) were pretreated with two different concentrations of MT (50 and 100 μM), and the effects of MT on the growth and antioxidant capacity of naked oat seedlings were analyzed to explore the regulatory effect of MT on salt tolerance. The results showed that pretreating with different concentrations of MT promoted the growth of seedlings in response to 150 mM NaCl. Different concentrations of MT reduced hydrogen peroxide, superoxide anion, and malondialdehyde contents. The exogenous application of MT also increased superoxide dismutase, peroxidase, catalase, and ascorbate peroxide activities. Chlorophyll content, leaf area, leaf volume, and proline increased in the leaves of naked oat seedlings under 150 mM NaCl stress. MT upregulated the expression levels of the lipid peroxidase genes lipoxygenase and peroxygenase, a chlorophyll biosynthase gene (ChlG), the mitogen-activated protein kinase genes Asmap1 and Aspk11, and the transcription factor genes (except DREB2), NAC, WRKY1, WRKY3, and MYB in salt-exposed MT-pretreated seedlings when compared with seedlings exposed to salt stress alone. These results demonstrate an important role of MT in the relief of salt stress and, therefore, provide a reference for managing salinity in naked oat.


1998 ◽  
Vol 62 (4) ◽  
pp. 1264-1300 ◽  
Author(s):  
Michael C. Gustin ◽  
Jacobus Albertyn ◽  
Matthew Alexander ◽  
Kenneth Davenport

SUMMARY A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.


2002 ◽  
Vol 15 (11) ◽  
pp. 1119-1127 ◽  
Author(s):  
Zhanming Hou ◽  
Chaoyang Xue ◽  
Youliang Peng ◽  
Talma Katan ◽  
H. Corby Kistler ◽  
...  

Fusarium graminearum is an important pathogen of small grains and maize in many areas of the world. Infected grains are often contaminated with mycotoxins harmful to humans and animals. During the past decade, F. graminearum has caused several severe epidemics of head scab in wheat and barley. In order to understand molecular mechanisms regulating fungal development and pathogenicity in this pathogen, we isolated and characterized a MAP kinase gene, MGV1, which is highly homologous to the MPS1 gene in Magnaporthe grisea. The MGV1 gene was dispensable for conidiation in F. graminearum but essential for female fertility during sexual reproduction. Vegetative growth of mgv1 deletion mutants was normal in liquid media but reduced on solid media. Mycelia of the mgv1 mutants had weak cell walls and were hypersensitive to cell wall degrading enzymes. Interestingly, the mgv1 mutants were self-incompatible when tested for heterokaryon formation, and their virulence was substantially reduced. The ability of the mutants to accumulate trichothecene mycotoxins on inoculated wheat was also greatly reduced. Our data suggest that MGV1 in F. graminearum is involved in multiple developmental processes related to sexual reproduction, plant infection, and cell wall integrity.


2020 ◽  
Author(s):  
Qing Xia ◽  
Qiuling Li ◽  
Shangquan Gan ◽  
Xiaofei Guo ◽  
Xiaosheng Zhang ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) can play important roles in uterine and ovarian functions. However, little researches have been done on the role of lncRNAs in the adrenal gland of sheep. Herein, RNA sequencing was used to compare and analyze gene expressions in adrenal tissues between FecB ++ (WW) and FecB BB (MM) sheep in the follicular and luteal phases and key lncRNAs and genes associated with reproduction were identified. Results In MM sheep, 38 lncRNAs and 545 mRNAs were differentially expressed in the adrenal gland between the luteal and follicular phases; In WW sheep, 30 differentially expressed lncRNAs and 210 mRNAs were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that differentially expressed lncRNAs and their target genes are mainly involved in the circadian rhythm, the mitogen activated protein kinase, thyroid, ovarian steroidogenesis and transforming growth factor beta signaling pathways. Key lncRNAs can regulate reproduction by modulating genes involved in these signaling pathways and biological processes. Specifically, XLOC_254761 , XLOC_357966 , 105614839 and XLOC_212877 targeting CREB1 , PER3 , SMAD1 and TGFBR2 , respectively, appear to play key regulatory roles. Conclusion These results broaden our understanding of lncRNAs in adrenal gland of sheep and provide new insights into the molecular mechanisms underlying sheep reproduction.


2014 ◽  
Vol 27 (5) ◽  
pp. 446-460 ◽  
Author(s):  
Haifeng Zhang ◽  
Qian Zhao ◽  
Xianxian Guo ◽  
Min Guo ◽  
Zhongqiang Qi ◽  
...  

The mitogen-activated protein kinase MoOsm1–mediated osmoregulation pathway plays crucial roles in stress responses, asexual and sexual development, and pathogenicity in Magnaporthe oryzae. Utilizing an affinity purification approach, we identified the putative transcriptional activator MoMsn2 as a protein that interacts with MoOsm1 in vivo. Disruption of the MoMSN2 gene resulted in defects in aerial hyphal growth, conidial production, and infection of host plants. Quantitative reverse transcription-polymerase chain reaction analysis showed that the expression of several genes involved in conidiophore formation was reduced in ΔMomsn2, suggesting that MoMsn2 might function as a transcriptional regulator of these genes. Subsequently, MoCos1 was identified as one of the MoMsn2 targets through yeast one-hybrid analysis in which MoMsn2 binds to the AGGGG and CCCCT motif of the MoCOS1 promoter region. Phenotypic characterization showed that MoMsn2 was required for appressorium formation and penetration and pathogenicity. Although the ΔMomsn2 mutant was tolerant to the cell-wall stressor Calcofluor white, it was sensitive to common osmotic stressors. Further analysis suggests that MoMsn2 is involved in the regulation of the cell-wall biosynthesis pathway. Finally, transcriptome data revealed that MoMsn2 modulates numerous genes participating in conidiation, infection, cell-wall integrity, and stress response. Collectively, our results led to a model in which MoMsn2 mediates a series of downstream genes that control aerial hyphal growth, conidiogenesis, appressorium formation, cell-wall biosynthesis, and infection and that also offer potential targets for the development of new disease management strategies.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yo-Han Yoo ◽  
Woo-Jong Hong ◽  
Ki-Hong Jung

Chloroplasts are intracellular semiautonomous organelles central to photosynthesis and are essential for plant growth and yield. The significance of the function of chloroplast-related genes in response to climate change has not been well studied in crops. In the present study, the initial focus was on genes that were predicted to be located in the chloroplast genome in rice, a model crop plant, with genes either preferentially expressed in the leaf or ubiquitously expressed in all organs. The characteristics were analyzed by Gene Ontology (GO) enrichment and MapMan functional classification tools. It was then identified that 110 GO terms (45 for leaf expression and 65 for ubiquitous expression) and 1,695 genes mapped to MapMan overviews were strongly associated with chloroplasts. In particular, the MapMan cellular response overview revealed a close association between heat stress response and chloroplast-related genes in rice. Moreover, features of these genes in response to abiotic stress were analyzed using a large-scale publicly available transcript dataset. Consequently, the expression of 215 genes was found to be upregulated in response to high temperature stress. Conversely, genes that responded to other stresses were extremely limited. In other words, chloroplast-related genes were found to affect abiotic stress response mainly through high temperature response, with little effect on response to drought and salinity stress. These results suggest that genes involved in diurnal rhythm in the leaves participate in the reaction to recognize temperature changes in the environment. Furthermore, the predicted protein–protein interaction network analysis associated with high temperature stress is expected to provide a very important basis for the study of molecular mechanisms by which chloroplasts will respond to future climate changes.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 940
Author(s):  
Sunjeet Kumar ◽  
Gaojie Li ◽  
Jingjing Yang ◽  
Xinfang Huang ◽  
Qun Ji ◽  
...  

Abiotic stress, such as drought and salinity, severely affect the growth and yield of many plants. Oenanthe javanica (commonly known as water dropwort) is an important vegetable that is grown in the saline-alkali soils of East Asia, where salinity is the limiting environmental factor. To study the defense mechanism of salt stress responses in water dropwort, we studied two water dropwort cultivars, V11E0022 and V11E0135, based on phenotypic and physiological indexes. We found that V11E0022 were tolerant to salt stress, as a result of good antioxidant defense system in the form of osmolyte (proline), antioxidants (polyphenols and flavonoids), and antioxidant enzymes (APX and CAT), which provided novel insights for salt-tolerant mechanisms. Then, a comparative transcriptomic analysis was conducted, and Gene Ontology (GO) analysis revealed that differentially expressed genes (DEGs) involved in the carbohydrate metabolic process could reduce oxidative stress and enhance energy production that can help in adaptation against salt stress. Similarly, lipid metabolic processes can also enhance tolerance against salt stress by reducing the transpiration rate, H2O2, and oxidative stress. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs involved in hormone signals transduction pathway promoted the activities of antioxidant enzymes and reduced oxidative stress; likewise, arginine and proline metabolism, and flavonoid pathways also stimulated the biosynthesis of proline and flavonoids, respectively, in response to salt stress. Moreover, transcription factors (TFs) were also identified, which play an important role in salt stress tolerance of water dropwort. The finding of this study will be helpful for crop improvement under salt stress.


Sign in / Sign up

Export Citation Format

Share Document