scholarly journals Using Novel, Agent-Based Periodic Mobility Model with Super Spreaders to Analyze Vaccination Strategies for COVID-19

Author(s):  
Mathew K Jacob ◽  
Eva Xueyao Guo

Background: With the innovation of vaccines to fight against the COVID-19 pandemic, following an effective vaccination strategy is crucial in mitigating deaths and hospitalizations and offering the greatest protection to a community or locality within the early months of vaccine-availability, when resources may be scarce. By using a novel agent-based periodic mobility model that captures periodic movement, which attempts to model human movement patterns, super spreaders, and ICU hospitalizations, this study attempts to find the best strategy for vaccinating individuals to mitigate the damage of COVID-19. Results: This study found that a vaccination strategy that first vaccinates the elderly would be most effective at mitigating deaths and lowering the ICU hospitalization peak during the first two months of vaccine rollout. Conclusion: For communities that are early in their vaccine campaign or that have limited resources for vaccination, we recommend that they prioritize vaccinating the elderly who are more susceptible to COVID-19 first.

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 344
Author(s):  
Silvia Cocchio ◽  
Tolinda Gallo ◽  
Stefania Del Zotto ◽  
Elena Clagnan ◽  
Andrea Iob ◽  
...  

Influenza and its complications are an important public health concern, and vaccination remains the most effective prevention measure. However, the efficacy of vaccination depends on several variables, including the type of strategy adopted. The goal of this study was to assess the impact of different influenza vaccination strategies in preventing hospitalizations for influenza and its related respiratory complications. A retrospective cohort study was conducted on data routinely collected by the health services for six consecutive influenza seasons, considering the population aged 65 years or more at the time of their vaccination and living in northeastern Italy. Our analysis concerns 987,266 individuals vaccinated against influenza during the study period. The sample was a mean 78.0 ± 7.7 years old, and 5681 individuals (0.58%) were hospitalized for potentially influenza-related reasons. The hospitalization rate tended to increase over the years, not-significantly peaking in the 2016–2017 flu season (0.8%). Our main findings revealed that hospitalizations related to seasonal respiratory diseases were reduced as the use of the enhanced vaccine increased (R2 = 0.5234; p < 0.001). Multivariate analysis confirmed the significantly greater protective role of the enhanced vaccine over the conventional vaccination strategy, with adjusted Odds Ratio (adj OR) = 0.62 (95% CI: 0.59–0.66). A prior flu vaccination also had a protective role (adj OR: 0.752 (95% CI: 0.70–0.81)). Age, male sex, and H3N2 mismatch were directly associated with a higher risk of hospitalization for pneumonia. In the second part of our analysis, comparing MF59-adjuvanted trivalent inactivated vaccine (MF59-TIV) with conventional vaccines, we considered 479,397 individuals, of which 3176 (0.66%) were admitted to a hospital. The results show that using the former vaccine reduced the risk of hospitalization by 33% (adj OR: 0.67 (95% CI: 0.59–0.75)). This study contributes to the body of evidence of a greater efficacy of enhanced vaccines, and MF59-adjuvanted TIV in particular, over conventional vaccination strategies in the elderly.


Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 434
Author(s):  
Beate Jahn ◽  
Gaby Sroczynski ◽  
Martin Bicher ◽  
Claire Rippinger ◽  
Nikolai Mühlberger ◽  
...  

(1) Background: The Austrian supply of COVID-19 vaccine is limited for now. We aim to provide evidence-based guidance to the authorities in order to minimize COVID-19-related hospitalizations and deaths in Austria. (2) Methods: We used a dynamic agent-based population model to compare different vaccination strategies targeted to the elderly (65 ≥ years), middle aged (45–64 years), younger (15–44 years), vulnerable (risk of severe disease due to comorbidities), and healthcare workers (HCW). First, outcomes were optimized for an initially available vaccine batch for 200,000 individuals. Second, stepwise optimization was performed deriving a prioritization sequence for 2.45 million individuals, maximizing the reduction in total hospitalizations and deaths compared to no vaccination. We considered sterilizing and non-sterilizing immunity, assuming a 70% effectiveness. (3) Results: Maximum reduction of hospitalizations and deaths was achieved by starting vaccination with the elderly and vulnerable followed by middle-aged, HCW, and younger individuals. Optimizations for vaccinating 2.45 million individuals yielded the same prioritization and avoided approximately one third of deaths and hospitalizations. Starting vaccination with HCW leads to slightly smaller reductions but maximizes occupational safety. (4) Conclusion: To minimize COVID-19-related hospitalizations and deaths, our study shows that elderly and vulnerable persons should be prioritized for vaccination until further vaccines are available.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261236
Author(s):  
Cong Yang ◽  
Yali Yang ◽  
Yang Li

In the past year, the global epidemic situation is still not optimistic, showing a trend of continuous expansion. With the research and application of vaccines, there is an urgent need to develop some optimal vaccination strategies. How to make a reasonable vaccination strategy to determine the priority of vaccination under the limited vaccine resources to control the epidemic and reduce human casualties? We build a dynamic model with vaccination which is extended the classical SEIR model. By fitting the epidemic data of three countries—China, Brazil, Indonesia, we have evaluated age-specific vaccination strategy for the number of infections and deaths. Furthermore, we have evaluated the impact of age-specific vaccination strategies on the number of the basic reproduction number. At last, we also have evaluated the different age structure of the vaccination priority. It shows that giving priority to vaccination of young people can control the number of infections, while giving priority to vaccination of the elderly can greatly reduce the number of deaths in most cases. Furthermore, we have found that young people should be mainly vaccinated to reduce the number of infections. When the emphasis is on reducing the number of deaths, it is important to focus vaccination on the elderly. Simulations suggest that appropriate age-specific vaccination strategies can effectively control the epidemic, both in terms of the number of infections and deaths.


Author(s):  
Patrick Hunziker

AbstractAim and BackgroundWe aimed at identifying vaccination strategies that minimize loss of life in the Covid-19 pandemic. Covid-19 mainly kills the elderly, but the pandemic is driven by social contacts that are more frequent in the young. Vaccines elicit stronger immune responses per dose in younger persons. As vaccine production is a bottleneck, many countries have adopted a strategy of first vaccinating the elderly and vulnerable, while postponing vaccination of the young.MethodsBased on published age-stratified immunogenicity data of the Moderna mRNA-1273 vaccine, we compared the established “one dose fits all” approach with tailored strategies: The known differential immunogenicity of vaccine doses in different age groups is exploited to vaccinate the elderly at full dose, while the young receive a reduced dose, amplifying the number of individuals receiving the vaccine early. A modeling approach at European Union scale with population structure, Covid-19 case and death rates similar to Europe in late January 2021 is used.ResultsWhen the elderly were vaccinated preferentially, the pandemic initially continued essentially unchecked, as it was dominantly driven by social contacts in other age groups. Tailored strategies, including regular dosing in the elderly but reduced dose vaccination in the young, multiplied early vaccination counts, and even with some loss in protection degree for the individual person, the protective effect towards stopping the pandemic and protecting lives was enhanced, even for the elderly. In the European Union, pandemic duration (threshold >100’000 cases/day) was shortened from 53 to 18-24 days; cumulative death count over 100 days was reduced by >30’000. Data suggest that the findings may be relevant to both, the Moderna and the Pfizer-BioNTech mRNA vaccines.ConclusionProtecting the vulnerable, minimizing overall deaths and stopping the pandemic is best achieved by an adaptive vaccination strategy using an age-tailored vaccine dose, in this model parameterized to European demographics, coronavirus transmission observations and vaccine characteristics.


2019 ◽  
Vol 147 ◽  
Author(s):  
R.M. Wallace ◽  
E.A. Undurraga ◽  
A. Gibson ◽  
J. Boone ◽  
E.G. Pieracci ◽  
...  

Abstract Dogs harbor numerous zoonotic pathogens, many of which are controlled through vaccination programs. The delivery of these programs can be difficult where resources are limited. We developed a dynamic model to estimate vaccination coverage and cost-per-dog vaccinated. The model considers the main factors that affect vaccination programs: dog demographics, effectiveness of strategies, efficacy of interventions and cost. The model was evaluated on data from 18 vaccination programs representing eight countries. Sensitivity analysis was performed for dog confinement and vaccination strategies. The average difference between modelled vaccination coverage and field data was 3.8% (2.3%–5.3%). Central point vaccination was the most cost-effective vaccination strategy when >88% of the dog population was confined. More active methods of vaccination, such as door-to-door or capture-vaccinate-release, achieved higher vaccination coverage in free-roaming dog populations but were more costly. This open-access tool can aid in planning more efficient vaccination campaigns in countries with limited resources.


2021 ◽  
Author(s):  
Nicolas Hoertel ◽  
Martin Blachier ◽  
Frédéric Limosin ◽  
Marina Sánchez-Rico ◽  
Carlos Blanco ◽  
...  

AbstractThe COVID-19 pandemic is a major global societal, economic and health threat. The availability of COVID-19 vaccines has raised hopes for a decline in the pandemic. We built upon a stochastic agent-based microsimulation model of the COVID-19 epidemic in France. We examined the potential impact of different vaccination strategies, defined according to the age, medical conditions, and expected vaccination acceptance of the target non-immunized adult population, on disease cumulative incidence, mortality, and number of hospital admissions. Specifically, we examined whether these vaccination strategies would allow to lift all non-pharmacological interventions (NPIs), based on a sufficiently low cumulative mortality and number of hospital admissions. While vaccinating the full adult non-immunized population, if performed immediately, would be highly effective in reducing incidence, mortality and hospital-bed occupancy, and would allow discontinuing all NPIs, this strategy would require a large number of vaccine doses. Vaccinating only adults at higher risk for severe SARS-CoV-2 infection, i.e. those aged over 65 years or with medical conditions, would be insufficient to lift NPIs. Immediately vaccinating only adults aged over 45 years, or only adults aged over 55 years with mandatory vaccination of those aged over 65 years, would enable lifting all NPIs with a substantially lower number of vaccine doses, particularly with the latter vaccination strategy. Benefits of these strategies would be markedly reduced if the vaccination was delayed, was less effective than expected on virus transmission or in preventing COVID-19 among older adults, or was not widely accepted.


2021 ◽  
Author(s):  
Patrick Hunziker

AbstractBackgroundWe aimed at minimizing loss of lives in the Covid-19 pandemic in the USA by identifying optimal vaccination strategies during a 100-day period with limited vaccine supplies. While lethality is highest in the elderly, transmission and case numbers are highest in the younger. A strategy of first vaccinating the elderly is widely used, thought to protect the vulnerable, elderly best. Despite lower immunogenicity in the elderly, mRNA vaccines retain high efficacy, implying that in the younger, reduced vaccine doses might suffice, thereby increasing vaccination counts with a given vaccine supply.MethodsUsing published immunogenicity data of the Moderna mRNA-1273 vaccine, we examined the value of personalized-dose vaccination strategies, using a modeling approach incorporating age-related vaccine immunogenicity, social contact patterns, population structure, Covid-19 case and death rates in the USA in late January 2021. An increase if the number of persons that can be vaccinated and a potential reduction of the individual protective efficacy was accounted for.ResultsAge-personalized dosing strategies reduced cases faster, shortening the pandemic, reducing the delay to reaching <100’000 cases/day from 64 to 30 days and avoiding 25’000 deaths within 100 days in the USA. In an “elderly first” vaccination strategy, mortality is higher even in the elderly. Findings were robust with transmission blocking efficacies of reduced dose vaccination between 30% to 90%, and with a vaccine supply from 1 to 3 million full dose vaccinations per day.ConclusionRapid reduction of Covid-19 case and death rate in the USA in 100 days with a limited vaccine supply is best achieved when personalized, age-tailored dosing for highly effective vaccines is used, according to this vaccination strategy model parameterized to U.S. demographics, Covid-19 transmission and vaccine characteristics. Protecting the vulnerable is most effectively achieved by personalized-dose vaccination of all population segments, while an “elderly first” approach costs more lives, even in the elderly.


2021 ◽  
Author(s):  
David E. Singh ◽  
Carmen Olmedo Luceron ◽  
Aurora Limia Sanchez ◽  
Miguel Guzman-Merino ◽  
Christian Duran ◽  
...  

● Background: This work analyses the impact of different vaccination strategies on the propagation of COVID-19 within the Madrid metropolitan area starting the 27th of December 2020 and ending in the Summer of 2021. The predictions are based on simulation using EpiGraph, an agent-based COVID-19 simulator. ● Methods: We briefly summarize the different interconnected models of EpiGraph and then we provide a comprehensive description of the vaccination model. We evaluate different vaccination strategies, and we validate the simulator by comparing the simulation results with real data from the metropolitan area of Madrid during the third wave. ● Results: We consider the different COVID-19 propagation scenarios on a social environment consisting of the ten largest cities in the Madrid metropolitan area, with 5 million individuals. The results show that the strategy that fares best is to vaccinate the elderly first with the two doses spaced 56 days apart; this approach reduces the final infection rate and the number of deaths by an additional 6% and 3% with respect to vaccinating the elderly first at the interval between doses recommended by the vaccine producer. ● Conclusion: Results show that prioritizing the vaccination of young individuals would significantly increase the number of deaths. On the other hand, spacing out the first and second dose by 56 days would result in a slight reduction in the number of infections and deaths. The reason is the increase in the number of vaccinated individuals at any time during the simulation.


2021 ◽  
Author(s):  
Nicolas Hoertel ◽  
Martin Blachier ◽  
Frédéric Limosin ◽  
Marina Sánchez Rico ◽  
Carlos Blanco ◽  
...  

Abstract The COVID-19 pandemic is a major global societal, economic and health threat. The availability of COVID-19 vaccines has raised hopes for a decline in the pandemic. We built upon a stochastic agent-based microsimulation model of the COVID-19 epidemic in France. We examined the potential impact of different vaccination strategies, defined according to the age, medical conditions, and expected vaccination acceptance of the target non-immunized adult population, on disease cumulative incidence, mortality, and number of hospital admissions. Specifically, we examined whether these vaccination strategies would allow to lift all non-pharmacological interventions (NPIs), based on a sufficiently low cumulative mortality and number of hospital admissions. While vaccinating the full adult non-immunized population, if performed immediately, would be highly effective in reducing incidence, mortality and hospital-bed occupancy, and would allow discontinuing all NPIs, this strategy would require a large number of vaccine doses. Vaccinating only adults at higher risk for severe SARS-CoV-2 infection, i.e. those aged over 65 years or with medical conditions, would be insufficient to lift NPIs. Immediately vaccinating only adults aged over 45 years, or only adults aged over 55 years with mandatory vaccination of those aged over 65 years, would enable lifting all NPIs with a substantially lower number of vaccine doses, particularly with the latter vaccination strategy. Benefits of these strategies would be markedly reduced if the vaccination was delayed, was less effective than expected on virus transmission or in preventing COVID-19 among older adults, or was not widely accepted.


Sign in / Sign up

Export Citation Format

Share Document