scholarly journals Legionella pneumophila infection and antibiotic treatment engenders a highly disturbed pulmonary microbiome with decreased microbial diversity

2019 ◽  
Author(s):  
Ana Elena Pérez-Cobas ◽  
Christophe Ginevra ◽  
Christophe Rusniok ◽  
Sophie Jarraud ◽  
Carmen Buchrieser

ABSTRACTBackgroundLung microbiome analyses have shown that the healthy lung is not sterile but it is colonized like other body sites by bacteria, fungi and viruses. However, little is known about the microbial composition of the lung microbiome during infectious diseases such as pneumonia and how it evolves during antibiotic therapy. To better understand the impact of the composition of the pulmonary microbiome on severity and outcome of pneumonia we analysed the composition and evolution of the human lung microbiome during pneumonia caused by the bacterium Legionella pneumophila.ResultsWe collected 10 bronchoalveolar lavage (BAL) samples from three patients during long-term hospitalisation due to severe pneumonia and performed a longitudinal in-depth study of the composition of their lung microbiome by high-throughput Illumina sequencing of the 16S rRNA gene (bacteria and archaea), ITS region (fungi) and 18S rRNA gene (eukaryotes). We found that the composition of the bacterial lung microbiome during pneumonia is hugely disturbed containing a very high percentage of the pathogen, a very low bacterial diversity, and an increased presence of opportunistic microorganisms such as species belonging to Staphylococcaceae and Streptococcaceae. The microbiome of antibiotic treated patients cured from pneumonia represented a different perturbation state with a higher abundance of resistant bacteria (mainly Firmicutes) and a significantly different bacterial composition as that found in healthy individuals. In contrast, the mycobiome remains more stable during pneumonia and antimicrobial therapy. Interestingly we identified possible cooperation within and between both communities. Furthermore, archaea (Methanobrevibacter) and protozoa (Acanthamoeba and Trichomonas) were detected.ConclusionsBacterial pneumonia leads to a collapse of the healthy microbiome and a strongly disturbed bacterial composition of the pulmonary microbiome that is dominated by the pathogen. Antibiotic treatment allows some bacteria to regrow or recolonize the lungs but the restoration of a healthy lung microbiome composition is only regained a certain time after the antibiotic treatment. Archaea and protozoa should also be considered, as they might be important but yet overseen members of the lung microbiome. Interactions between the micro- and the mycobiome might play a role in the restoration of the microbiome and the clinical evolution of the disease.

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Ana Elena Pérez-Cobas ◽  
Christophe Ginevra ◽  
Christophe Rusniok ◽  
Sophie Jarraud ◽  
Carmen Buchrieser

ABSTRACT Despite the importance of pneumonia to public health, little is known about the composition of the lung microbiome during infectious diseases, such as pneumonia, and how it evolves during antibiotic therapy. To study the possible relation of the pulmonary microbiome to the severity and outcome of this respiratory disease, we analyzed the dynamics of the pathogen and the human lung microbiome during persistent infections caused by the bacterium Legionella pneumophila and their evolution during antimicrobial treatment. We collected 10 bronchoalveolar lavage fluid samples from three patients during long-term hospitalization due to pneumonia and performed a unique longitudinal study of the interkingdom microbiome, analyzing the samples for presence of bacteria, archaea, fungi, and protozoa by high-throughput Illumina sequencing of marker genes. The lung microbiome of the patients was characterized by a strong predominance of the pathogen, a low diversity of the bacterial fraction, and an increased presence of opportunistic microorganisms. The fungal fraction was more stable than the bacterial fraction. During long-term treatment, no genomic changes or antibiotic resistance-associated mutations that could explain the persistent infection occurred, according to whole-genome sequencing analyses of the pathogen. After antibiotic treatment, the microbiome did not recover rapidly but was mainly constituted of antibiotic-resistant species and enriched in bacteria, archaea, fungi, or protozoa associated with pathogenicity. The lung microbiome seems to contribute to nonresolving Legionella pneumonia, as it is strongly disturbed during infection and enriched in opportunistic and/or antibiotic-resistant bacteria and microorganisms, including fungi, archaea, and protozoa that are often associated with infections. IMPORTANCE The composition and dynamics of the lung microbiome during pneumonia are not known, although the lung microbiome might influence the severity and outcome of this infectious disease, similar to what was shown for the microbiome at other body sites. Here we report the findings of a comprehensive analysis of the lung microbiome composition of three patients with long-term pneumonia due to L. pneumophila and its evolution during antibiotic treatment. This work adds to our understanding of how the microbiome changes during disease and antibiotic treatment and points to microorganisms and their interactions that might be beneficial. In addition to bacteria and fungi, our analyses included archaea and eukaryotes (protozoa), showing that both are present in the pulmonary microbiota and that they might also play a role in the response to the microbiome disturbance.


2021 ◽  
Author(s):  
Maria Luisa Tello ◽  
Rebeca Lavega ◽  
Margarita Pérez ◽  
Antonio J. Pérez ◽  
Michael Thon ◽  
...  

Abstract The cultivation of edible mushroom is an emerging sector with a potential yet to be discovered. Unlike plants, it is a less developed agriculture where many studies are lacking to optimize the cultivation. Mushrooms are a source of resources still to be revealed, which have applications not only in food, but in many other sectors such as health, industry and biotechnology. Mushroom cultivation consists of the development of selective substrates through composting where the mushroom grows via solid fermentation process. In case of Agaricus bisporus, the compost fully colonized by mycelium hardly produces mushrooms and it is necessary to apply a casing layer with certain physical, chemical and biological characteristics to shift from the vegetative mycelium to the reproductive one, where the native microbiota plays crucial roles. Currently, the industry faces a challenge to substitute the actual peat based casing materials due to the limited natural resources and the impact on the peatlands where peat is extracted.In this work we have employed high-throughput techniques by next generation sequencing to screen the microbial structure of casing soil employed in mushroom cultivation while sequencing V3-V4 of the 16S rRNA gene for bacteria and the ITS2 region of rRNA for fungi in an Illumina MiSeq. In addition, the microbiome dynamics and evolution (bacterial and fungal communities) in peat based casing along the process of incubation of Agaricus bisporus have been studied, while comparing the effect of fungicidal treatment (Chlorothalonil and Metrafenone). Statistically significant changes in populations of bacteria and fungi were observed. Microbial composition differed significantly based on incubation day, changing radically from the original communities to a specific microbial composition adapted to enhance the A. bisporus mycelium growth. Chlorothalonil treatment seems to delay casing colonization by A. bisporus. Proteobacteria and Bacteroidota appeared as the most dominant bacterial phyla. We observed a great change in the structure of the bacteria populations between day 0 and the following days. Fungi populations changed more gradually, A. bisporus displacing the rest of the species as the cultivation cycle progresses. A better understanding of the microbial communities in the casing will hopefully allow us to increase the biological efficiency during production as well as possibly help us to have a clearer view of the microbial community-pathogen relationships as they are directly related to disease development.


2021 ◽  
Author(s):  
Evangelia Stavroulaki ◽  
Jan S. Suchodolski ◽  
Rachel Pilla ◽  
Geoffrey T. Fosgate ◽  
Chi-Hsuan Sung ◽  
...  

Antibiotic treatment in early life influences gastrointestinal (GI) microbial composition and function. In humans, the resultant intestinal dysbiosis is associated with an increased risk for certain diseases later in life. The objective of this study was to determine the temporal effects of antibiotic treatment on the GI microbiome of young cats. Fecal samples were collected from cats randomly allocated to receive either amoxicillin/clavulanic acid (20 mg/kg q12h) for 20 days (AMC group; 15 cats) or doxycycline (10 mg/kg q24h) for 28 days (DOX group;15 cats) as part of the standard treatment of upper respiratory tract infection. In addition, feces were collected from healthy control cats (CON group;15 cats). All cats were approximately two months of age at enrolment. Samples were collected on days 0 (baseline), 20 or 28 (AMC and DOX, respectively; last day of treatment), 60, 120, and 300. DNA was extracted and sequencing of the 16S rRNA gene and qPCR assays were performed. Fecal microbial composition was different on the last day of treatment for AMC cats, and 1 month after the end of antibiotic treatment for DOX cats, compared to CON cats. Species richness was significantly greater in DOX cats compared to CON cats on the last day of treatment. Abundance of Enterobacteriales was increased, and that of Erysipelotrichi was decreased in cats of the AMC group on the last day of treatment compared to CON cats. The abundance of the phylum Proteobacteria was increased in cats of the DOX group on days 60 and 120 compared to cats of the CON group. Only minor differences in abundances between the treatment groups and the control group were present on day 300. Both antibiotics appear to delay the developmental progression of the microbiome, and this effect is more profound during treatment with amoxicillin/clavulanic acid and one month after treatment with doxycycline. Future studies are required to determine if these changes influence microbiome function and whether they have possible effects on disease susceptibility in cats.


2016 ◽  
Vol 62 (6) ◽  
pp. 538-541 ◽  
Author(s):  
Marija Kaevska ◽  
Petra Videnska ◽  
Karel Sedlar ◽  
Iva Bartejsova ◽  
Alena Kralova ◽  
...  

The aim of this study was to determine possible differences in the faecal microbiota of dairy cows infected with Mycobacterium avium subsp. paratuberculosis (Johne’s disease) in comparison with noninfected cows from the same herds. Faecal samples from cows in 4 herds were tested for M. avium subsp. paratuberculosis by real-time PCR, and faecal bacterial populations were analysed by 454 pyrosequencing of the 16S rRNA gene. The most notable differences between shedding and nonshedding cows were an increase in the genus Psychrobacter and a decrease in the genera Oscillospira, Ruminococcus, and Bifidobacterium in cows infected with M. avium subsp. paratuberculosis. The present study is the first to report the faecal microbial composition in dairy cows infected with M. avium subsp. paratuberculosis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
T Goolam Mahomed ◽  
RPH Peters ◽  
GHJ Pretorius ◽  
A Goolam Mahomed ◽  
V Ueckermann ◽  
...  

Abstract Background Targeted metagenomics and IS-Pro method are two of the many methods that have been used to study the microbiome. The two methods target different regions of the 16 S rRNA gene. The aim of this study was to compare targeted metagenomics and IS-Pro methods for the ability to discern the microbial composition of the lung microbiome of COPD patients. Methods Spontaneously expectorated sputum specimens were collected from COPD patients. Bacterial DNA was extracted and used for targeted metagenomics and IS-Pro method. The analysis was performed using QIIME2 (targeted metagenomics) and IS-Pro software (IS-Pro method). Additionally, a laboratory cost per isolate and time analysis was performed for each method. Results Statistically significant differences were observed in alpha diversity when targeted metagenomics and IS-Pro methods’ data were compared using the Shannon diversity measure (p-value = 0.0006) but not with the Simpson diversity measure (p-value = 0.84). Distinct clusters with no overlap between the two technologies were observed for beta diversity. Targeted metagenomics had a lower relative abundance of phyla, such as the Proteobacteria, and higher relative abundance of phyla, such as Firmicutes when compared to the IS-Pro method. Haemophilus, Prevotella and Streptococcus were most prevalent genera across both methods. Targeted metagenomics classified 23 % (144/631) of OTUs to a species level, whereas IS-Pro method classified 86 % (55/64) of OTUs to a species level. However, unclassified OTUs accounted for a higher relative abundance when using the IS-Pro method (35 %) compared to targeted metagenomics (5 %). The two methods performed comparably in terms of cost and time; however, the IS-Pro method was more user-friendly. Conclusions It is essential to understand the value of different methods for characterisation of the microbiome. Targeted metagenomics and IS-Pro methods showed differences in ability in identifying and characterising OTUs, diversity and microbial composition of the lung microbiome. The IS-Pro method might miss relevant species and could inflate the abundance of Proteobacteria. However, the IS-Pro kit identified most of the important lung pathogens, such as Burkholderia and Pseudomonas and may work in a more diagnostics-orientated setting. Both methods were comparable in terms of cost and time; however, the IS-Pro method was easier to use.


Author(s):  
Caspar Bundgaard-Nielsen ◽  
Nadia Ammitzbøll ◽  
Yusuf Abdi Isse ◽  
Abdisalam Muqtar ◽  
Ann-Maria Jensen ◽  
...  

AbstractBackgroundNew sensitive techniques have revealed a large population of bacteria in the human urinary tract, challenging the perception of the urine of healthy humans being sterile. While the role of this urinary microbiota is unknown, dysbiosis has been linked to disorders like urgency urinary incontinence and interstitial cystitis. When comparing studies it is crucial to account for possible confounders introduced due to methodological differences. Here we investigated whether storage condition or time of collection, had any impact on the urinary microbial composition.ResultsFor comparison of different storage conditions, urine was collected from five healthy adult female donors, and analyzed by 16S rRNA gene sequencing. Using the same methods, the daily or day-to-day variation in urinary microbiota was investigated in nineteen healthy donors, including four women, five men, five girls, and five boys. With the exception of two male adult donors, none of the tested conditions gave rise to significant differences in alpha and beta diversities between individuals. Conclusion: The composition of the urinary microbiota was found to be highly resilient to changes introduced by storage temperature and duration. In addition, we did not observe any intrapersonal daily or day-to-day variations in microbiota composition in women, girls or boys.Together our study supports flexibility in study design, when conducting urinary microbiota studies.Author summaryThe discovery of bacteria native to the urinary tract in healthy people, a location previously believed to be sterile, has prompted research into the clinical potential of these bacteria. However, methodological weaknesses can significantly influence such studies, and thus development of robust techniques for investigating these bacteria are needed. In the present study, we investigated whether differences in storage following collection, could affect the bacterial composition of urine samples. Next, we investigated if this composition exhibited daily or day-to-day variations.Firstly, we found, that the bacterial composition of urine could be maintained by storage at −80 °C, −20 °C, or refrigerated at 4 °C. Secondly, the bacterial composition of urine remained stable over time. Overall, the results of this study provide information important to study design in future investigations into the clinical implications of urinary bacteria.


Author(s):  
Hongxia Li ◽  
Jianwei Chen ◽  
Xiaojing Ren ◽  
Chuanli Yang ◽  
Shuai Liu ◽  
...  

BackgroundChronic constipation is one of the most prevalent functional gastrointestinal disorders, yet its etiology is multifactorial, and the pathophysiological mechanism is still unclear. Previous studies have shown that the gut microbiota of constipated patients differs from healthy controls; however, many discrepancies exist in the findings, and no clear link has been confirmed between chronic constipation and changes in the gut microbiota. Growing evidence indicates that age, gender, and hormone levels can affect the composition of gut microbiota. The aim of this study is to examine the overall changes in gut microbiota within a specific sub-population of patients, namely, constipated women of reproductive age.MethodsWe carried out a cross-sectional study comparing the fecal microbial composition of 30 healthy women and 29 constipated women using 16S rRNA gene sequencing. Only women of reproductive age were recruited to reduce the effects of age, gender, and hormone levels on the microbiome, and to prevent conflating the impact of these factors with the effects of constipation.ResultsThere were obvious differences in the gut microbiota in constipated women of reproductive age compared with the healthy controls, manifesting mainly as a significant increase in the abundance of Bacteroides (p < 0.05) and a significant decrease in the abundance of Proteobacteria (p < 0.01). The overall composition of the gut microbiota in each group was different, which was reflected in the ratios of Firmicutes to Bacteroidetes (F/B), which was 1.52 in the constipated group vs. 2.21 in the healthy group. Additionally, there was a significant decrease in butyrate-producing bacteria, like Roseburia and Fusicatenibacter (p < 0.01).ConclusionThe overall composition of the gut microbiota changed in constipated women of reproductive age, characterized by a loss in Proteobacteria and an increase in Bacteroidetes. Furthermore, the abundance of some butyrate-producing bacteria also reduced. These changes may reflect the unique interactions between host and some bacteria, or some bacterial metabolic products, which may be important targets for future studies to explore the pathogenesis of constipation.


2020 ◽  
Author(s):  
Kévin Lequette ◽  
Nassim Ait-Mouheb ◽  
Nicolas Adam ◽  
Marine Muffat-Jeandet ◽  
Valérie Bru-Adan ◽  
...  

AbstractDripper clogging reduces the performance and service life of a drip irrigation system. The impact of chlorination (1.5 ppm of free chlorine during 1 h application) and pressure flushing (0.18 MPa) on the biofouling of non-pressure-compensating drippers fed by real reclaimed wastewater was studied at lab scale using Optical Coherence Tomography. The effect of these treatments on microbial composition (bacteria and eukaryotes) was also investigated by High-throughput DNA sequencing. Biofouling was mainly observed in inlet, outlet and return areas of the drippers. Chlorination limited biofilm development mainly in the mainstream of the milli-labyrinth channel. It was more efficient when combined with pressure flushing. Moreover, chlorination was more efficient in maintaining the water distribution uniformity. It reduced the bacterial concentration and the diversity of the dripper biofilms compared to the pressure flushing method. This method strongly modified the microbial communities, promoting chlorine-resistant bacteria such as Comamonadaceae or Azospira. Inversely, several bacterial groups were identified as sensitive to chlorination such as Chloroflexi and Planctomycetes. Nevertheless, one month after stopping the treatments the bacterial diversity re-increased and the chlorine-sensitive bacteria such as Chloroflexi phylum and the Saprospiraceae, Spirochaetaceae, Christensenellaceae and Hydrogenophilaceae families re-emerged with the growth of biofouling, highlighting the resilience of the bacteria from drippers. Based on PCoA analyses, the structure of the communities still clustered separately from never-chlorinated drippers, showing that the effect of chlorination was still present one month after stopping the treatment.HighlightsThe fouling of drippers is a bottleneck for drip irrigation using reclaimed wastewaterBiofouling was lowest when chlorination was combined with pressure flushingThe β-Proteobacteria and Firmicutes contain chlorine resistant bacteriaThe decrease of Chloroflexi by chlorination was transitoryThe bacterial community was resilient after the interruption of cleaning events


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9500
Author(s):  
Xiaojuan Chen ◽  
Da He ◽  
Lianfeng Zhou ◽  
Yankun Cao ◽  
Zhanjing Li

Construction of hydropower stations has been an important approach to meet China’s increasing power demand, but the impact of construction of hydropower stations on river microbiota is not fully understood. To evaluate this, the microbial composition from 18 sampling sites in the downstream of Jinsha River of China, upstream and downstream of two completed and two under-construction hydropower stations, were analyzed using high-throughput 16S rRNA gene sequencing. Three independent samples from each site were analyzed. A total of 18,683 OTUs from 1,350 genera were identified at 97% sequence similarity. Our results showed that the completion of hydropower stations would significantly increase the relative abundances of Acidobacteria, Chlorobi, Chloroflexi, Cyanobacteria, Nitrospirae, and Planctomycetes, especially the relative abundance of Synechococcus dOTUs and thus increase the risk of algal blooms. PCA based on all KEGG pathways and the significantly different KEGG pathways showed the predicted metabolic characteristics of the water microbiota by PICRUSt in the activated hydropower station group were significant difference to the other groups. Results from canonical correspondence analysis showed that water temperature and dissolved oxygen had significant effects on microbiota composition. These results are important for assessing the impact of hydropower stations on river microbiota and their potential environmental risks.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2245
Author(s):  
Yiping Zhu ◽  
Wuyan Jiang ◽  
Reed Holyoak ◽  
Bo Liu ◽  
Jing Li

The objective of this study was to investigate the oral microbial composition of the donkey and whether basic dental treatment, such as dental floating, would make a difference to the oral microbial environment in donkeys with dental diseases using high-throughput bacterial 16S rRNA gene sequencing. Oral swab samples were collected from 14 donkeys with various dental abnormalities on day 0 (before treatment) and day 20 (twenty days after treatment). It is the first report focusing on the oral microbiome in donkeys with dental diseases and the impact of common dental procedures thereon. Identified in group Day 0 and group Day 20, respectively, were 60,439.6 and 58,579.1 operational taxonomic units (OTUs). Several taxa in Day 0 differed significantly from Day 20 at the phylum and genus levels, but no statistically significant difference was observed in richness and diversity of Day 0 and Day 20. The results also indicated that a larger-scale study focusing on healthy donkey oral microbiome, as well as the correlation of dental diseases and oral microbiomes at different time frames following more specific and consistent dental treatment, are warranted.


Sign in / Sign up

Export Citation Format

Share Document