scholarly journals Subcellular mRNA localization regulates ribosome biogenesis in migrating cells

2019 ◽  
Author(s):  
Maria Dermit ◽  
Martin Dodel ◽  
Flora C. Y. Lee ◽  
Muhammad S. Azman ◽  
Hagen Schwenzer ◽  
...  

AbstractTranslation of Ribosomal Protein-coding mRNAs (RP-mRNAs) constitutes a key step in ribosome biogenesis, but the mechanisms which modulate RP-mRNAs translation in coordination with other cellular processes are poorly defined. Here we show that the subcellular localization of RP-mRNAs acts as a key regulator of their translation during cell migration. As cells migrate into their surroundings, RP-mRNAs localize to actin-rich protrusions at the front the cells. This localization is mediated by La-related protein 6 (LARP6), an RNA binding protein that is enriched in protrusions. Protrusions act as hotspots of translation for RP-mRNAs, resulting in enhancement of ribosome biogenesis and overall protein synthesis, which is required for sustained migration. In human breast carcinomas, Epithelial to Mesenchymal Transition (EMT) upregulates LARP6 expression to enhance ribosome biogenesis and support invasive growth. Our findings reveal LARP6 mediated mRNA localization as a key regulator of ribosome biogenesis during cell migration, and demonstrate a role for this process in cancer progression downstream of EMT.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.


2019 ◽  
Vol 8 (4) ◽  
pp. 560 ◽  
Author(s):  
Javier Martinez-Useros ◽  
Nuria Garcia-Carbonero ◽  
Weiyao Li ◽  
Maria J. Fernandez-Aceñero ◽  
Ion Cristobal ◽  
...  

CSDE1 (cold shock domain containing E1) gene is located upstream of the N-RAS locus, and codes for an RNA-binding protein named Upstream of N-Ras (UNR). In cancer, CSDE1 has been shown to regulate c-Fos, c-Myc, Pten, Rac1, or Vimentin. UNR/CSDE1 has been studied in breast, melanoma, pancreatic and prostate cancer. Then, the aim of this study is to evaluate the role of CSDE1/UNR in colorectal cancer progression and maintenance of aggressive phenotype. We firstly evaluated UNR/CSDE1 expression in human colon cancer derived cell lines and patient samples. Subsequently, we performed functional experiments by UNR/CSDE1 downregulation. We also evaluated UNR/CSDE1 prognostic relevance in two independent sets of patients. Not only was UNR/CSDE1 expression higher in tumor samples compared to untransformed samples, but also in colonospheres and metastatic origin cell lines than their parental and primary cell lines, respectively. Downregulation of UNR/CSDE1 reduced cell viability and migration throughout a restrain of epithelial-to-mesenchymal transition and increases sensitivity to apoptosis. Interestingly, high UNR/CSDE1 expression was associated with poor prognosis and correlated positively with c-MYC expression in colorectal cancer samples and cell lines. Here, we show for the first time compelling data reporting the oncogenic role of UNR/CSDE1 in human colorectal cancer.


2016 ◽  
Vol 7 (5-6) ◽  
pp. 311-319 ◽  
Author(s):  
Daniel Senfter ◽  
Sibylle Madlener ◽  
Georg Krupitza ◽  
Robert M. Mader

AbstractIn the last decade, microRNAs (miRs or miRNAs) became of great interest in cancer research due to their multifunctional and active regulation in a variety of vital cellular processes. In this review, we discuss the miR-200 family, which is composed of five members (miR-141, miR-200a/200b/200c and miR-429). Although being among the best investigated miRNAs in the field, there are still many open issues. Here, we describe the potential role of miR-200 as prognostic and/or predictive biomarker, its influence on motility and cell migration as well as its role in epithelial to mesenchymal transition (EMT) and metastasis formation in different tumour types. Recent studies also demonstrated the influence of miR-200 on drug resistance and described a correlation between miR-200 expression levels and overall survival of patients. Despite intense research in this field, the full role of the miR-200 family in cancer progression and metastasis is not completely understood and seems to differ between different tumour types and different cellular backgrounds. To elucidate these differences further, a finer characterisation of the role of the individual miRNA-200 family members is currently under investigation.


2020 ◽  
Vol 4 (1) ◽  
pp. 197-220 ◽  
Author(s):  
Alexandre Francou ◽  
Kathryn V. Anderson

Epithelial-to-mesenchymal transitions (EMTs) are complex cellular processes where cells undergo dramatic changes in signaling, transcriptional programming, and cell shape, while directing the exit of cells from the epithelium and promoting migratory properties of the resulting mesenchyme. EMTs are essential for morphogenesis during development and are also a critical step in cancer progression and metastasis formation. Here we provide an overview of the molecular regulation of the EMT process during embryo development, focusing on chick and mouse gastrulation and neural crest development. We go on to describe how EMT regulators participate in the progression of pancreatic and breast cancer in mouse models, and discuss the parallels with developmental EMTs and how these help to understand cancer EMTs. We also highlight the differences between EMTs in tumor and in development to arrive at a broader view of cancer EMT. We conclude by discussing how further advances in the field will rely on in vivo dynamic imaging of the cellular events of EMT.


Author(s):  
Bashdar Mahmud Hussen ◽  
Tahereh Azimi ◽  
Atefe Abak ◽  
Hazha Jamal Hidayat ◽  
Mohammad Taheri ◽  
...  

Being located in a gene desert region on 9q21.11-q21.12, BRAF-activated non-protein coding RNA (BANCR) is an lncRNA with 693 bp length. It has been discovered in 2012 in a research aimed at assessment of gene expression in the melanocytes in association with BRAF mutation. Increasing numbers of studies have determined its importance in the tumorigenesis through affecting cell proliferation, migration, invasion, apoptosis, and epithelial to mesenchymal transition. BANCR exerts its effects via modulating some tumor-related signaling pathways particularly MAPK and other regulatory mechanisms such as sponging miRNAs. BANCR has been up-regulated in endometrial, gastric, breast, melanoma, and retinoblastoma. Conversely, it has been down-regulated in some other cancers such as those originated from lung, bladder, and renal tissues. In some cancer types such as colorectal cancer, hepatocellular carcinoma and papillary thyroid carcinoma, there is no agreement about BANCR expression, necessitating the importance of additional functional studies in these tissues. In the present manuscript, we review the investigations related to BANCR expression changes in cancerous cell lines, clinical samples, and animal models of cancer. We also discuss the outcome of its deregulation in cancer progression, prognosis, and the underlying mechanisms of these observations.


2019 ◽  
Vol 63 (5) ◽  
pp. 579-594 ◽  
Author(s):  
Guillem Lambies ◽  
Antonio García de Herreros ◽  
Víctor M. Díaz

Abstract Cell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1037 ◽  
Author(s):  
Cho ◽  
Kim ◽  
Baek ◽  
Kim ◽  
Lee

Rho GDP dissociation inhibitors (RhoGDIs) play important roles in various cellular processes, including cell migration, adhesion, and proliferation, by regulating the functions of the Rho GTPase family. Dissociation of Rho GTPases from RhoGDIs is necessary for their spatiotemporal activation and is dynamically regulated by several mechanisms, such as phosphorylation, sumoylation, and protein interaction. The expression of RhoGDIs has changed in many human cancers and become associated with the malignant phenotype, including migration, invasion, metastasis, and resistance to anticancer agents. Here, we review how RhoGDIs control the function of Rho GTPases by regulating their spatiotemporal activity and describe the regulatory mechanisms of the dissociation of Rho GTPases from RhoGDIs. We also discuss the role of RhoGDIs in cancer progression and their potential uses for therapeutic intervention.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 638
Author(s):  
Kittipong Sanookpan ◽  
Nongyao Nonpanya ◽  
Boonchoo Sritularak ◽  
Pithi Chanvorachote

Cancer metastasis is the major cause of about 90% of cancer deaths. As epithelial-to-mesenchymal transition (EMT) is known for potentiating metastasis, this study aimed to elucidate the effect of ovalitenone on the suppression of EMT and metastasis-related behaviors, including cell movement and growth under detached conditions, and cancer stem cells (CSCs), of lung cancer cells. Methods: Cell viability and cell proliferation were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-liumbromide (MTT) and colony formation assays. Cell migration and invasion were analyzed using a wound-healing assay and Boyden chamber assay, respectively. Anchorage-independent cell growth was determined. Cell protrusions (filopodia) were detected by phalloidin-rhodamine staining. Cancer stem cell phenotypes were assessed by spheroid formation. The proteins involved in cell migration and EMT were evaluated by Western blot analysis and immunofluorescence staining. Results: Ovalitenone was used at concentrations of 0–200 μM. While it caused no cytotoxic effects on lung cancer H460 and A549 cells, ovalitenone significantly suppressed anchorage-independent growth, CSC-like phenotypes, colony formation, and the ability of the cancer to migrate and invade cells. The anti-migration activity was confirmed by the reduction of filopodia in the cells treated with ovalitenone. Interestingly, we found that ovalitenone could significantly decrease the levels of N-cadherin, snail, and slug, while it increased E-cadherin, indicating EMT suppression. Additionally, the regulatory signaling of focal adhesion kinase (FAK), ATP-dependent tyrosine kinase (AKT), the mammalian target of rapamycin (mTOR), and cell division cycle 42 (Cdc42) was suppressed by ovalitenone. Conclusions: The results suggest that ovalitenone suppresses EMT via suppression of the AKT/mTOR signaling pathway. In addition, ovalitenone exhibited potential for the suppression of CSC phenotypes. These data reveal the anti-metastasis potential of the compound and support the development of ovalitenone treatment for lung cancer therapy.


2020 ◽  
Vol 22 (1) ◽  
pp. 89
Author(s):  
Ha Thi Thu Do ◽  
Jungsook Cho

Chemokine–receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial–mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1–XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1700
Author(s):  
Jihye Seo ◽  
Jain Ha ◽  
Eunjeong Kang ◽  
Haelim Yoon ◽  
Sewoong Lee ◽  
...  

Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a leading cause of cancer-related deaths. As HCC has a high mortality rate and its incidence is increasing worldwide, understanding and treating HCC are crucial for resolving major public health concerns. In the present study, wound healing screening assays were performed using natural product libraries to identify natural chemicals that can inhibit cancer cell migration. Glaucarubinone (GCB) showed a high potential for inhibiting cell migration. The anti-cancer effects of GCB were evaluated using the HCC cell line, Huh7. GCB showed anti-cancer effects, as verified by wound healing, cell migration, invasion, colony formation, and three-dimensional spheroid invasion assays. In addition, cells treated with GCB showed suppressed matrix metalloproteinase activities. Immunoblotting analyses of intracellular signaling pathways revealed that GCB regulated the levels of Twist1, a crucial transcription factor associated with epithelial-to-mesenchymal transition, and mitogen-activated protein kinase. The invasive ability of cancer cells was found to be decreased by the regulation of Twist1 protein levels. Furthermore, GCB downregulated phosphorylation of extracellular signal-regulated kinase. These results indicate that GCB exhibits anti-metastatic properties in Huh7 cells, suggesting that it could be used to treat HCC.


Sign in / Sign up

Export Citation Format

Share Document