Thermal and mechanical properties of copper/photopolymer composite

2016 ◽  
Vol 22 (4) ◽  
pp. 684-690
Author(s):  
Shih-Hsuan Chiu ◽  
Cheng-Lung Wu ◽  
Shun-Ying Gan ◽  
Kun-Ting Chen ◽  
Yi-Ming Wang ◽  
...  

Purpose The purpose of this study is to increase the thermal and mechanical properties of the photopolymer by filling with the copper powder for the application of rapid tooling. Design/methodology/approach In this study, the photopolymer is filled with the different loading of copper powder for investigating the thermal and mechanical properties of the copper/photopolymer composite. The thermal properties of the copper/photopolymer composite are characterized with the degradation temperature and with the thermal conductivity. The mechanical properties of copper/photopolymer composite are performed with the tensile strength and hardness testing. Moreover, the copper/photopolymer composite is imaged by using a scanning electron microscopic with energy dispersive spectroscopy. Findings The tensile strength of the copper/photopolymer composite is increased over 45 per cent at 20 phr copper loading. The hardness of the photopolymer has a negative correlation with the increasing copper loading and is decreased about 28.5 per cent at 100 phr copper loading. The degradation temperature of the copper/photopolymer composite is increased about 7.2 per cent at 70 phr copper loading. The thermal conductivity of the copper/photopolymer composite is increased over 65 per cent at 100 phr copper loading. Originality/value The photopolymer used in rapid prototyping system is generally fragile and has poor thermal properties. This study improves the thermal and mechanical properties of the photopolymer with the copper filling which has been never investigated in the field of rapid prototyping applications.

2020 ◽  
Vol 20 (7) ◽  
pp. 4216-4220
Author(s):  
Yong-Ho Kim ◽  
Hyo-Sang Yoo ◽  
Hyeon-Taek Son

Thermal properties and microstructure of Al-4 wt.% Zn-2 wt.% Cu–x (x = 2 wt%. Mg, 2 wt%. Sn, 0.7 wt.% Mg-0.7 wt.% Sn-0.7 wt.% Ca) alloys on cast and extrusion have been investigated with extrusion temperature of 400 °C. Al-4 wt.% Zn-2 wt.% Cu alloy was composed of Al and Al2Cu phases. By adding Mg contents, Al2Mg3Zn3 phase was increased and Al2Cu phase was decreased respectively. During hot extrusion, elongated in the extrusion direction because of severe deformation. The thermal conductivity with temperature and composition of as-extruded Al-4 wt.% Zn-2 wt.% Cu–x alloys decreases with adding 2 wt.% Mg, 2 wt.% Sn contents from 190.925 and 196.451 W/mK but thermal properties of addition of 0.7 wt.% Mg-0.7 wt.% Sn-0.7 wt.% Ca element slightly reduced from 222.32 to 180.775 W/mK. The ultimate tensile strength (UTS) for Al-4 wt.% Zn- 2 wt.% Cu alloy was 121.67 MPa. By adding 2 wt.% Mg contents, tensile strength was dramatically increased with 350.5 MPa.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3728
Author(s):  
Gan Luo ◽  
Yujian Huang ◽  
Chengbo Li ◽  
Zhenghua Huang ◽  
Jun Du

The microstructures, mechanical properties, and thermal conductivity (TC) of Al-2Fe-xCo (x = 0~0.8) alloys in as-cast, homogeneous annealed, and cool rolled states are systematically studied. Results indicate that appropriate Co modification (x ≤ 0.5) simultaneously improves the thermal and mechanical properties of as-cast Al-2Fe alloys. The improvement of TC is attributed to ameliorating the morphology of primary Al3Fe phases from needles to short rods and fine particles, which decreases the scattering probability of free electrons during the electronic transmission. However, further increasing the Co content (x = 0.8) decreases the TC due to the formation of a coarse plate-like Al2FeCo phase. Besides, the thermal conductivity of annealed Al-2Fe-xCo alloys is higher than that of as-cast alloys because of the elimination of lattice defects and spheroidization of Al3Fe phases. After cool rolling with 80 % deformation, thermal conductivity of alloys slightly increases due to the breaking down of Al2FeCo phases. The rolled Al-2Fe-0.3Co alloy exhibits the highest thermal conductivity, which is about 225 W/(m·K), approximately 11 % higher than the as-cast Al-2Fe sample. The ultimate tensile strength (UTS) and elongation (EL) of as-cast Al-2Fe-0.5Co (UTS: 138 MPa; EL: 22.0 %) are increased by 35 % and 69 %, respectively, compared with those of unmodified alloy (UTS: 102 MPa; EL: 13.0 %).


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1265 ◽  
Author(s):  
Feng Yang ◽  
Cuiqin Lan ◽  
Haiming Zhang ◽  
Jian Guan ◽  
Fan Zhang ◽  
...  

Functional fabrics have gained attention as an environmentally-friendly synthesis route. In the current study, novelty bamboo pulp fabrics with thermal conductivity properties were prepared by coating the fabric with graphene and cellulose nanocrystal (G/CNC) solutions. The influences of G and CNC concentrations on properties of fabrics were studied. The viscosities of the G/CNC solutions increased with an increase of G contents. G had an obvious thickening effect. Furthermore, compounded fabrics with different G and CNC contents (GCBPFs) were prepared and extensively characterized in terms of thermal and mechanical properties, and morphology. The ultimate thermal conductivity, bursting strength, and tensile strength of the GCBPF were 0.136 W/m·K, 1.514 MPa, and 25.8 MPa, with 4 wt.% CNC and 3 wt.% G contents, respectively. The results demonstrated that the as-fabricated GCBPFs with favorable thermal conductivity could be applied as a novel fast cooling textile for the clothing industry.


2016 ◽  
Vol 18 (2) ◽  
pp. 84-88 ◽  
Author(s):  
Kamil Kornaus ◽  
Agnieszka Gubernat ◽  
Dariusz Zientara ◽  
Paweł Rutkowski ◽  
Ludosław Stobierski

Abstract Previous studies concerning pure tungsten carbide polycrystalline materials revealed that nanolayers of graphite located between WC grains improve its thermal properties. What is more, pressure-induced orientation of graphene nano platelets (GNP) in hot pressed silicon nitride-graphene composites results in anisotropy of thermal conductivity. Aim of this study was to investigate if addition of GNP to WC will improve its thermal properties. For this purpose, tungsten carbide with 0.5–6 wt.% of GNP(12)-additive underwent hot pressing. The microstructure observations performed by SEM microscopy. The anisotropy was determined via ultrasonic measurements. The following mechanical properties were evaluated: Vickers hardness, bending strength, fracture toughness KIc. The influence of GNP(12) addition on oxidation resistance and thermal conductivity was examined. It was possible to manufacture hot-pressed WC-graphene composites with oriented GNP(12) particles, however, the addition of graphene decreased both thermal and mechanical properties of the material.


2015 ◽  
Vol 21 (3) ◽  
pp. 262-269 ◽  
Author(s):  
Shih-Hsuan Chiu ◽  
Sigit Tri Wicaksono ◽  
Kun-Ting Chen ◽  
Chiu-Yen Chen ◽  
Sheng-Hong Pong

Purpose – The purpose of this paper is to evaluate the mechanical properties of photopolymer/CB (carbon black) nanocomposite when applied in a visible-light rapid prototyping (RP) machine. Design/methodology/approach – The mechanical properties of the samples such as hardness and tensile strength along with thermal stability were analyzed. The curing time behavior of the photopolymer/CB nanocomposites was tested by using a rigid-body pendulum rheometer. The shrinkage property and dimensional stability were also analyzed using the technique according to ASTM D2566 and ASTM D1204, respectively. Findings – The results showed that the prototype fabricated from pristine photopolymer tended to exhibit poor mechanical properties and low thermal stability. However, after adding the photopolymer with various concentrations of nano-CB and dispersant in appropriate composition, the photopolymer/CB nanocomposite prototype not only reduced its curing time but also enhanced its mechanical properties, thermal stability and dimensional stability. Practical implications – The presented results can be used in a visible-light RP machine. Originality/value – The mechanical and thermal properties of photopolymer are improved with nano-CB additives for a RP system.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Rui He ◽  
Nan Dai ◽  
Zhenjun Wang

Geopolymers are prepared by alkali solution-activated natural minerals or industrial waste materials, which have been widely used as new sustainable building and construction materials for their excellent thermal and mechanical properties. The thermal and mechanical properties of geopolymers at high temperature have attracted great attention from many researchers. However, there are few systematic works concerning these two issues. Therefore, this work reviewed the thermal and mechanical behaviors of geopolymers at high temperature. Firstly, the thermal properties of geopolymers in terms of mass loss, thermal expansion, and thermal conductivity after high temperature were explained. Secondly, the mechanical properties of residual compressive strength and stress-strain relationship of fly ash geopolymers and metakaolin geopolymers after high temperature were analyzed. Finally, the microstructure and mineralogical characteristics of geopolymers upon heating were interpreted according to the changes of microstructures and compositions. The results show that the thermal properties of geopolymers are superior to cement concrete. The geopolymers possess few mass loss and a low expansion ratio and thermal conductivity at high temperature. The thermal and mechanical properties of the geopolymers are usually closely related to the raw materials and the constituents of the geopolymers. Preparation and testing conditions can affect the mechanical properties of the geopolymers. The stress-strain curves of geopolymer are changed by the composition of geopolymers and the high temperature. The silicon-type fillers not only improve the thermal expansion of the geopolymers but also enhance mechanical properties of the geopolymers. But, they do not contribute to reducing the thermal conductivity. the different raw materials, aluminosilicate precursor and reinforcement materials, result in different geopolymer damage during the heating. However, phase transitions can occur during the process of heating regardless of the raw materials. The additional performance enhancements can be achieved by optimizing the paste formulation, adjusting the inner structure, changing the alkali type, and incorporating reinforcements.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


2021 ◽  
Author(s):  
Yue Zhu ◽  
Qingyu Peng ◽  
Haowen Zheng ◽  
Fuhua Xue ◽  
Pengyang Li ◽  
...  

With the development of multifunction and miniaturization in modern electronics, polymeric films with strong mechanical performance and high thermal conductivity are urgently needed. Two-dimensional transition metal carbides and nitrides (MXenes)...


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wasim Barham ◽  
Ammar AL-Maabreh ◽  
Omar Latayfeh

PurposeThe influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were used and cast with the same ingredients. Tap water was used in the first mix and magnetic water was used in the second mix. A total of 48 specimens were cast and divided as follows: 16 cylinders for the concrete compressive strength test (8 samples for each mix), 16 cylinders for the splitting tensile strength (8 specimens for each mix) and 16 beams to test the influences of magnetized water on the flexural strength of concrete (8 specimens for each mixture). Specimens were exposed to temperatures of (25 °C, 200 °C, 400 °C and 600 °C). The experimental results showed that magnetic water highly affected the mechanical properties of concrete. Specimens cast and curried out with magnetic water show higher compressive strength, splitting tensile strength and flexural strength compared to normal water specimens at all temperatures. The relative strength range between the two types of water used was 110–123% for compressive strength and 110–133% for splitting strength. For the center point loading test, the relative flexural strength range was 118–140%. The use of magnetic water in mixing concrete contribute to a more complete hydration process.Design/methodology/approachExperimental study was carried out on two concrete mixes to investigate the effect of magnetic water. Mix#1 used normal water as the mixing water, and Mix#2 used magnetic water instead of normal water. After 28 days, all the samples were taken out of the tank and left to dry for seven days, then they were divided into different groups. Each group was exposed to a different temperature where it was placed in a large oven for two hours. Three different tests were carried out on the samples, these tests were concrete compressive strength, flexural strength and splitting tensile strength.FindingsExposure of concrete to high temperatures had a significant influence on concrete mechanical properties. Specimens prepared using magnetic water showed higher compressive strength at all temperature levels. The use of magnetic water in casting and curing concrete can increase the compressive strength by 23%. Specimens prepared using magnetic water show higher splitting tensile strength at all temperatures up to 33%. The use of magnetic water in casting and curing can strengthen and increase concrete resistance to high temperatures, a significant enhancement in flexural strength at all temperatures was found with a value up to 40%.Originality/valuePrevious research proved the advantages of using magnetic water for improving the mechanical properties of concrete under normal conditions. The potential of using magnetic water in the concrete industry in the future requires conducting extensive research to study the behavior of magnetized concrete under severe conditions to which concrete structures may be subjected to. These days, there are attempts to obtain stronger concrete with high resistance to harsh environmental conditions without adding new costly ingredients to its main mixture. No research has been carried out to investigate the effect of magnetic water on the mechanical properties of concrete exposed to elevated temperature. The main objective of this study is to evaluate the effect of using magnetic water on the mechanical properties of hardened concrete subjected to elevated temperature.


2018 ◽  
Vol 913 ◽  
pp. 49-54
Author(s):  
Jian Xin Wu ◽  
Chong Gao ◽  
Rui Yin Huang ◽  
Zhen Shan Liu ◽  
Pi Zhi Zhao

5083 aluminum alloy, due to moderate strength, good thermal conductivity and formability, is an ideal structural material for car production. Influence of cold rolling process on microstructures and mechanical properties of 5083 aluminum alloys is significant and research hotspots. In this paper, cold deformation and annealing processes on grains, tensile properties and anisotropies of 5083 alloy sheets were studied. Results showed that incomplete recrystallization occured on 5083 alloy sheets when annealing temperature was at 300°C. The degree of recrystallization increased slightly with the cold deformation raised from 30% to 50% and varied slightly with prolonged annealing time from 2h to 4h. Furthermore, fully recrystallization occurred on 5083 alloy sheets at the annealing temperature above 320°C. Tensile strength of 5083 alloy sheets reduced significantly when the annealing temperature was raised from 300°C to 320°C, while it varied slightly when the annealing temperature continued to rise to 380°C.


Sign in / Sign up

Export Citation Format

Share Document