Utilization of recycled hazardous waste bagasse as reinforcement to develop green composite material

2020 ◽  
Vol 17 (3) ◽  
pp. 399-406 ◽  
Author(s):  
Shashi Prakash Dwivedi ◽  
Garima Dwivedi

Purpose In the current scenario, air pollution and soil pollution from the industries wastes are one of the major problems all over the world. Further, disposal of these wastes from industries are very costly. However, several attempts were carried out by various researchers in the past to use these wastes. One of the most common waste products is bagasse from sugar industries. These hazardous bagasse wastes lead to air and soil pollution. This study aims to recycle bagasse waste in the development of aluminium base composite as partial replacement of ceramic particles. Design/methodology/approach In the present investigation, recycled bagasse waste was used in the development of aluminium base composite as partial replacement of ceramic particles such as SiC, Al2O3 and B4C. Production industries of these ceramic particles (SiC, B4C and Al2O3) emit huge amount of greenhouse gases such as N2O3, CH4, CO2 and H2O. These green house gases produce lots of environment problem. Furthermore, production of these ceramic particles is also costly. AA6061 aluminium alloy was taken as matrix material. Composite material was developed using the stir casting technique. Findings Microstructure results showed proper distribution of bagasse ash and MgO powder in the aluminium base metal matrix composite. It was notified from analysis that minimum corrosion loss and minimum porosity were found for Al/2.5% bagasse ash/12.5% MgO powder composite. For the same composition, hardness and thermal expansion were also observed better as compared to other selected compositions. However, density and cost of composites continuously decrease by increasing percentage of bagasse ash in development of composite. Originality/value Results showed about 11.30% improvement in tensile strength, 11.64% improvement in specific strength and 40% improvement in hardness by using bagasse ash as reinforcement with MgO powder in development of aluminium base composite.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Poornesh ◽  
Shreeranga Bhat ◽  
E.V. Gijo ◽  
Pavana Kumara Bellairu

PurposeThis article aims to study the tensile properties of a functionally graded composite structure with Al–18wt%Si alloy as the matrix material and silicon carbide (SiC) particles as the reinforcing element. More specifically, the study's primary objective is to optimize the composition of the material elements using a robust statistical approach.Design/methodology/approachIn this research, the composite material is fabricated using a combination of stir casting and the centrifugal casting technique. Moreover, the test specimen required to study the tensile strength are prepared according to the ASTM (American Society for Testing and Materials) standards. Eventually, optimal composition to maximize the tensile property of the material is determined using the mixture design approach.FindingsThe investigation results imply that the addition of the SiC plays a crucial role in increasing the tensile strength of the composite. The optical microstructural images of the composite show the adequate distribution of the reinforcing particles with the matrix. The proposed regression model shows better predictability of tensile strength. In addition, the methodology aids in optimizing the mixture component values to maximize the tensile strength of the produced functionally graded composite structure.Originality/valueLittle work has been reported so far where a hypereutectic Al–Si alloy is considered the matrix material to produce the composite structure. The article attempts to make a composite structure by using a combination of stir casting and centrifugal casting. Furthermore, it employs the mixture design to optimize the composition and predict the model of the study, which is one of a kind in the field of material science.


Author(s):  
V. A. Kalinichenko ◽  
A. S. Kalinichenko ◽  
S. V. Grigoriev

To create friction pairs operating in severe working conditions, composite materials are now increasingly used. Composite materials obtained with the use of casting technologies are of interest due to the possibility to manufacture wide range of compositions at low price compared to powder metallurgy. Despite the fact that many composite materials have been sufficiently studied, it is of interest to develop new areas of application and give them the properties required by the consumer. In the present work the composite materials on the basis of silumin reinforced with copper granules were considered. Attention was paid to the interaction between the matrix alloy and the reinforcing phase material as determining the properties of the composite material. The analysis of distribution of the basic alloying elements in volume of composite material and also in zones of the interphases interaction is carried out. The analysis of the possibility of obtaining a strong interphase zone of contact between the reinforcing component and the matrix material without significant dissolution of the reinforcing material is carried out.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Junchao Li ◽  
Yanan Yang ◽  
Ze Zhao ◽  
Ran Yan

Purpose The purpose of this study is to establish a finite element (FE) model with the random distribution of the Nylon12/hydroxyapatite (PA12/HA) composite material in selective laser sintering (SLS) process for considering the material anisotropy, which aims to obtain the law of temperature and stress changes in PA12/HA sintering. Design/methodology/approach By using python script in Abaqus, the FE model is established in which the two materials are randomly distributed and are assigned to their intrinsic temperature-dependent physical parameters. Molten pool sizes at various process parameters were evaluated in terms of numerical simulation and scanning electron microscope analysis, identifying a good agreement between them. Evaluation of temperature and stress distribution under the condition of different HA contents was also conducted. Findings It shows that the uneven distribution and quantity of HA powder play a vital role in stress concentration and temperature increase. Additionally, the influence of HA addition on the mechanical performance of SLS-fabricated parts shows that it is conducive to improve compressive strength when the HA ratio is less than 5% because an excess of HA powder tends to bring about a certain amount of microspores resulting in a decrease in part density. Originality/value The FE model of the PA12/HA composite material with parameterized random distribution in SLS can be applied in other similar additive manufacturing technologies. It provides a feasible guideline for the numerical analysis of properties of composite materials.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ying-Chung Chen ◽  
Xu Feng Cheng ◽  
Siu-Tong Choi

Purpose This study aims to study the dynamic characteristics of a helical geared rotor-bearing system with composite material rotating shafts. Design/methodology/approach A finite element model of a helical geared rotor-bearing system with composite material rotating shafts is developed, in which the rotating shafts of the system are composed of composite material and modeled as Timoshenko beam; a rigid mass is used to represent the gear and their gyroscopic effect is taken into account; bearings are modeled as linear spring-damper; and the equations of motion are obtained by applying Lagrange’s equation. Natural frequencies, mode description, lateral responses, axial responses, lamination angles, lamination numbers, gear mesh stiffness and bearing damping coefficients are investigated. Findings The desired mechanical properties could be constructed using different lamination numbers and fiber included angles by composite rotating shafts. The frequency of the lateral module decreases as the included angle of the fibers and the principal shaft of the composite material rotating shaft increase. Because of the gear mesh stiffness increase, the resonance frequency of the coupling module of the system decreases, the lateral module is not influenced and the steady-state response decreases. The amplitude of the steady-state lateral and axial responses gradually decreases as the bearing damping coefficient increases. Practical implications The model of a helical geared rotor-bearing system with composite material rotating shafts is established in this paper. The dynamic characteristics of a helical geared rotor-bearing system with composite rotating shafts are investigated. The numerical results of this study can be used as a reference for subsequent personnel research. Originality/value The dynamic characteristics of the geared rotor-bearing system had been reported in some literature. However, the dynamic analysis of a helical geared rotor-bearing system with composite material rotating shafts is still rarely investigated. This paper shows some novel results of lateral and axial response results obtained by different lamination angles and different lamination numbers. In the future, it makes valuable contributions for further development of dynamic analysis of a helical geared rotor-bearing system with composite material rotating shafts.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Furkan Ulu ◽  
Ravi Pratap Singh Tomar ◽  
Ram Mohan

Purpose PolyJet technology allows printing complex multi-material composite configurations using Voxel digital designs' capability, thus allowing rapid prototyping of 3D printed structural parts. This paper aims to investigate the processing and mechanical characteristics of composite material configurations formed from soft and hard materials with different distributions and sizes via voxel digital print design. Design/methodology/approach Voxels are extruded representations of pixels and represent different material information similar to each pixel representing colors in digital images. Each geometric region of a digitally designed part represented by a voxel can be printed with a different material. Multi-material composite part configurations were formed and rapidly prototyped using a PolyJet printer Stratasys J750. A design of experiments composite part configuration of a soft material (Tango Plus) within a hard material matrix (Vero Black) was studied. Composite structures with different hard and soft material distributions, but at the same volume fractions of hard and soft materials, were rapidly prototyped via PolyJet printing through developed Voxel digital printing designs. The tensile behavior of these formed composite material configurations was studied. Findings Processing and mechanical behavior characteristics depend on materials in different regions and their distributions. Tensile characterization obtained the fracture energy, tensile strength, modulus and failure strength of different hard-soft composite systems. Mechanical properties and behavior of all different composite material systems are compared. Practical implications Tensile characteristics correlate to digital voxel designs that play a critical role in additive manufacturing, in addition to the formed material composition and distributions. Originality/value Results clearly indicate that multi-material composite systems with various tensile mechanical properties could be created using voxel printing by engineering the design of material distributions, and sizes. The important parameters such as inclusion size and distribution can easily be controlled within all slices via voxel digital designs in PolyJet printing. Therefore, engineers and designers can manipulate entire morphology and material at each voxel level, and different prototype morphologies can be created with the same voxel digital design. In addition, difficulties from AM process with voxel printing for such material designs is addressed, and effective digital solutions were used for successful prototypes. Some of these difficulties are extra support material or printing the part with different dimension than it designed to achieve the final part dimension fidelity. Present work addressed and resolved such issued and provided cyber based software solutions using CAD and voxel discretization. All these increase broad adaptability of PolyJet AM in industry for prototyping and end-use.


2020 ◽  
Vol 72 (10) ◽  
pp. 1147-1152
Author(s):  
Ömer Savaş

Purpose This study aims to investigate the production and abrasive wear rate of functionally graded TiB2/Al composites. TiB2 particles have been spontaneously formed in liquid matrix using in situ technique. The properties of composites such as hardness, abrasive wear rate and microstructure have been examined. Design/methodology/approach In situ TiB2 reinforcement phase was synthesized by using a liquid Al–Ti–B system. A semi-solid composite (Al(l)-TiB2(s)) prepared at 900°C was solidified under a centrifugal force to both grade functionally and give the final shape to materials. Abrasive wear test of materials was conducted using the pin-on-disk method at room temperature. The wear tests were carried out with two different loads of 1 Newton (N) and 2 N, a sliding velocity of 3.5 m s−1 and a sliding distance of 75 m. Findings This research provided the following findings; TiB2 particles can be successfully synthesized with in situ reaction technique in molten aluminum. It was determined that abrasive wear rate increases with increasing load and decreases with increasing TiB2 reinforcement content within matrix. Originality/value In previous studies, there have been many trials on the in situ production of TiB2-reinforced aluminum matrix composites. However, there are few studies on production of in situ TiB2-reinforced aluminum matrix functionally graded materials. At the same time, there is no study that the properties of composite, such as hardness and abrasive wear rate, are examined together according to centrifugal force. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2019-0538/


2020 ◽  
Vol 4 (4) ◽  
pp. 159
Author(s):  
Scott Landes ◽  
Todd Letcher

Through the past two decades, there has been a continued push for renewable resources and future sustainability of materials and processes. This has prompted more developments of providing environmentally friendly practices and products, both in terms of higher recyclability and greater use of renewable resources. An important area of interest are materials for construction and manufacturing purposes, specifically “green” sustainable reinforcement materials for thermoplastic composite materials. During this time, there has also been an evolution in manufacturing methods. Additive manufacturing (AM) has continued to grow exponentially since its inception for its extensive benefits. This study aims to investigate an additive manufactured composite material that is a greener alternative to other composites that are not reinforced by natural fibers. A bamboo filled polylactic acid (PLA) composite manufactured by fused filament fabrication was evaluated in order to gather mechanical strength characteristics by means of tensile, flexure, compression, impact, and shear tests. In this material, the bamboo reinforcing material and the PLA matrix material can both be sourced from highly renewable resources. In this study, a variety of test samples were manufactured at different manufacturing parameters to be used for mechanical testing. The results were recorded with respect to varying manufacturing parameters (raster angle orientation). It was found that the 0° raster angle orientation performed the best in every category except tensile. Additively manufactured bamboo filled PLA was also seen to have comparable strength to certain traditionally manufactured bamboo fiber reinforced plastics.


2020 ◽  
Vol 20 (2) ◽  
pp. 191-207 ◽  
Author(s):  
Muhammad Waseem Khan ◽  
Yousaf Ali

Purpose The change in climate and depletion of natural resources because of the harmful emissions from different materials becomes a main issue for the globe. Some of the developed and developing countries have focused on this issue and performed research to provide a solution. The purpose of this study is to identify the best types of concrete based on its impact on the environment and economy. Design/methodology/approach The life cycle assessment and life cycle cost analysis of six concrete mixtures that include construction and demolition wastes (CDW), marble sludge, rice husk and bagasse ash as a partial replacement of cement, are performed. These types of concrete are compared with each other and with ordinary concrete to select the best possible concrete type for a developing country, like Pakistan. Findings The results show that, although for an agricultural country like Pakistan, the agriculture wastes such as rice husk and bagasse ash are preferable to be used, if the emissions of CO2 and CO from rice husk and NOx and SO2 from bagasse ash are properly controlled. However, based on the results, it is recommended to use the CDW in concrete because of the small amount of air emissions and affordable prices. Originality/value Through this study, a path has been provided to construction companies and relative government organizations of Pakistan, which leads to sustainable practices in the construction industry. Moreover, the base is provided for future researchers who want to work in this area, as for Pakistan, there is no database available that helps to identify the impact of different concrete on the environment.


2016 ◽  
Vol 198 (19) ◽  
pp. 2643-2650 ◽  
Author(s):  
Boo Shan Tseng ◽  
Charlotte D. Majerczyk ◽  
Daniel Passos da Silva ◽  
Josephine R. Chandler ◽  
E. Peter Greenberg ◽  
...  

ABSTRACTMembers of the genusBurkholderiaare known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterizedBurkholderia thailandensisbiofilm development under flow conditions and sought to determine whether QS contributes to this process.B. thailandensisbiofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by “dome” structures filled with biofilm matrix material. We showed that this process was dependent on QS.B. thailandensishas three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the threeB. thailandensisQS systems, we show that QS-1 is required for proper biofilm development, since abtaR1mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. ThebtaR1mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions.IMPORTANCEThe saprophyteBurkholderia thailandensisis a close relative of the pathogenic bacteriumBurkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms,B. thailandensisis an ideal model organism for investigating questions inBurkholderiaphysiology. In this study, we characterizedB. thailandensisbiofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows thatB. thailandensisproduces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience ofB. thailandensisbiofilms against changes in the nutritional environment.


2014 ◽  
Vol 10 (3) ◽  
pp. 416-448 ◽  
Author(s):  
M. Grujicic ◽  
J.S. Snipes ◽  
S. Ramaswami ◽  
R. Yavari ◽  
C.-F. Yen ◽  
...  

Purpose – The purpose of this paper is to address the problem of substitution of steel with fiber-reinforced polymer-matrix composite in military-vehicle hull-floors, and identifies and quantifies the associated main benefits and shortcomings. Design/methodology/approach – The problem is investigated using a combined finite-element/discrete-particle computational analysis. Within this analysis, soil (in which a landmine is buried), gaseous detonation products and air are modeled as assemblies of discrete, interacting particles while the hull-floor is treated as a Lagrangian-type continuum structure. Considerable effort has been invested in deriving the discrete-material properties from the available experimental data. Special attention has been given to the derivation of the contact properties since these, in the cases involving discrete particles, contain a majority of the information pertaining to the constitutive response of the associated materials. The potential ramifications associated with the aforementioned material substitution are investigated under a large number of mine-detonation scenarios involving physically realistic ranges of the landmine mass, its depth of burial in the soil, and the soil-surface/floor-plate distances. Findings – The results obtained clearly revealed both the benefits and the shortcomings associated with the examined material substitution, suggesting that they should be properly weighted in each specific case of hull-floor design. Originality/value – To the authors’ knowledge, the present work is the first public-domain report of the findings concerning the complexity of steel substitution with composite-material in military-vehicle hull-floors.


Sign in / Sign up

Export Citation Format

Share Document