scholarly journals Leakage Current Response Mechanism of Insulator String With Ambient Humidity on Days Without Rain

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 55229-55236 ◽  
Author(s):  
Jianguo Wang ◽  
Yanjun Xi ◽  
Chunhua Fang ◽  
Li Cai ◽  
Jianping Wang ◽  
...  
2022 ◽  
Vol 43 (1) ◽  
pp. 014102
Author(s):  
Zhaomeng Gao ◽  
Shuxian Lyu ◽  
Hangbing Lyu

Abstract Ferroelectric hysteresis loop measurement under high driving frequency generally faces great challenges. Parasitic factors in testing circuits such as leakage current and RC delay could result in abnormal hysteresis loops with erroneous remnant polarization (P r) and coercive field (E c). In this study, positive-up-negative-down (PUND) measurement under a wide frequency range was performed on a 10-nm thick Hf0.5Zr0.5O2 ferroelectric film. Detailed analysis on the leakage current and RC delay was conducted as the polarization switching occurs in the FE capacitor. After considering the time lag caused by RC delay, reasonable calibration of current response over the voltage pulse stimulus was employed in the integral of polarization current over time. In such a method, rational P–V loops measured at high frequencies (>1 MHz) was successfully achieved. This work provides a comprehensive understanding on the effect of parasitic factors on the polarization switching behavior of FE films.


2003 ◽  
Vol 26 (4) ◽  
pp. 235-243 ◽  
Author(s):  
Jianying Li ◽  
Shengtao Li ◽  
M. A. Alim ◽  
G. Chen

The degradation of the epoxy resin-coated commercial ZnO varistors at elevated temperatures and ambient humid conditions has been investigated experimentally. It has been observed that the leakage current of the ZnO varistors increases under the voltage stress at elevated temperatures with ambient humidity content. The change in the leakage current corresponding to a fixed electric field with respect to the initial current is taken as the dimensionless degradation index. This index is monitored at various experimental conditions in conjunction with the curing condition of the epoxy resin powder. The results are carefully evaluated, and it has been found that the diffusion process of the moisture into the ZnO varistors plays a key role in the degradation process provided that these varistors had excellent property to begin with. The ionisation of the moisture at the interface between the ZnO block and the epoxy resin coating leads to the increase of the leakage current. Furthermore, the role of the ambient pressure corresponding to the elevated temperatures is considered as the variable to the degradation process. These data are also monitored and analysed as a function of time.


1987 ◽  
Vol 57 (02) ◽  
pp. 222-225 ◽  
Author(s):  
A H Soberay ◽  
M C Herzberg ◽  
J D Rudney ◽  
H K Nieuwenhuis ◽  
J J Sixma ◽  
...  

SummaryThe ability of endocarditis and dental strains of Streptococcus sanguis to induce platelet aggregation in plasma (PRP) from normal subjects were examined and compared to responses of PRP with known platelet membrane glycoprotein (GP) and response defects. S. sanguis strains differed in their ability to induce normal PRPs to aggregate. Strains that induced PRP aggregation in more than 60% of donors were significantly faster agonists (mean lag times to onset of aggregation less than 6 min) than those strains inducing response in PRPs of fewer than 60% of donors.Platelets from patients with Bernard-Soulier syndrome aggregated in response to strains of S. sanguis. In contrast, platelets from patients with Glanzmann’s thrombasthenia and from a patient with a specific defect in response to collagen were unresponsive to S. sanguis. These observations show that GPIb and V are not essential, but GPIIb-IIIa and GPIa are important in the platelet response mechanism to S. sanguis. Indeed, the data suggests that the platelet interaction mechanisms of S. sanguis and collagen may be similar.


2017 ◽  
Vol 137 (8) ◽  
pp. 481-486
Author(s):  
Junichi Hayasaka ◽  
Kiwamu Shirakawa ◽  
Nobukiyo Kobayashi ◽  
Kenichi Arai ◽  
Nobuaki Otake ◽  
...  

2010 ◽  
Vol 130 (11) ◽  
pp. 1037-1041 ◽  
Author(s):  
Takuma Miyake ◽  
Yuya Seo ◽  
Tatsuya Sakoda ◽  
Masahisa Otsubo
Keyword(s):  

2002 ◽  
Vol 716 ◽  
Author(s):  
Yi-Mu Lee ◽  
Yider Wu ◽  
Joon Goo Hong ◽  
Gerald Lucovsky

AbstractConstant current stress (CCS) has been used to investigate the Stress-Induced Leakage Current (SILC) to clarify the influence of boron penetration and nitrogen incorporation on the breakdown of p-channel devices with sub-2.0 nm Oxide/Nitride (O/N) and oxynitride dielectrics prepared by remote plasma enhanced CVD (RPECVD). Degradation of MOSFET characteristics correlated with soft breakdown (SBD) and hard breakdown (HBD), and attributed to the increased gate leakage current are studied. Gate voltages were gradually decreased during SBD, and a continuous increase in SILC at low gate voltages between each stress interval, is shown to be due to the generation of positive traps which are enhanced by boron penetration. Compared to thermal oxides, stacked O/N and oxynitride dielectrics with interface nitridation show reduced SILC due to the suppression of boron penetration and associated positive trap generation. Devices stressed under substrate injection show harder breakdown and more severe degradation, implying a greater amount of the stress-induced defects at SiO2/substrate interface. Stacked O/N and oxynitride devices also show less degradation in electrical performance compared to thermal oxide devices due to an improved Si/SiO2 interface, and reduced gate-to-drain overlap region.


Author(s):  
Franco Stellari ◽  
Peilin Song ◽  
James C. Tsang ◽  
Moyra K. McManus ◽  
Mark B. Ketchen

Abstract Hot-carrier luminescence emission is used to diagnose the cause of excess quiescence current, IDDQ, in a low power circuit implemented in CMOS 7SF technology. We found by optical inspection of the chip that the high IDDQ is related to the low threshold, Vt, device process and in particular to transistors with minimum channel length (0.18 μm). In this paper we will also show that it is possible to gain knowledge regarding the operating conditions of the IC from the analysis of optical emission due to leakage current, aside from simply locating defects and failures. In particular, we will show how it is possible to calculate the voltage drop across the circuit power grid from time-integrated acquisitions of leakage luminescence.


Author(s):  
Jong Hak Lee ◽  
Jong Eun Kim ◽  
Chang Su Park ◽  
Nam Il Kim ◽  
Jang Won Moon ◽  
...  

Abstract In this work, a slightly unetched gate hard mask failure was analyzed by nano probing. Although unetched hard mask failures are commonly detected from the cross sectional view with FIB or FIB-TEM and planar view with the voltage contrast, in this case of the very slightly unetched hard mask, it was difficult to find the defects within the failed area by physical analysis methods. FIB is useful due to its function of milling and checking from the one region to another region within the suspected area, but the defect, located under contact was very tiny. So, it could not be detected in the tilted-view of the FIB. However, the state of the failure could be understood from the electrical analysis using a nano probe due to its ability to probe contact nodes across the fail area. Among the transistors in the fail area, one transistor’s characteristics showed higher leakage current and lower ON current than expected. After physical analysis, slightly remained hard mask was detected by TEM. Chemical processing was followed to determine the gate electrode (WSi2) connection to tungsten contact. It was also proven that when gate is floated, more leakage current flows compared to the state that the zero voltage is applied to the gate. This was not verified by circuit simulation due to the floating nodes.


Sign in / Sign up

Export Citation Format

Share Document