An Impulsive Method for the Analysis of Piezoelectric Energy Harvesters for Intelligent Tires

Author(s):  
Alberto Doria ◽  
Federico Moro ◽  
Daniele Desideri ◽  
Alvise Maschio ◽  
Zhifeng Zhang

Piezoelectric harvesters used for feeding the sensors of intelligent tires experience impulse excitation when the harvester enters the contact patch of the tire. The design, development and set up of advanced harvesters characterized by new materials, optimized shape and specific solutions for tuning require the possibility of testing prototypes in the laboratory simulating the actual working conditions and in particular impulsive events. The aims of tests are manifold: verification of mechanical and electrical performance, comparison with numerical models and updating, identification of parameters of the harvester that are difficult to measure directly. In this paper a testing method based on hammer excitation of an harvester mounted on a specific testing rig is presented. The testing rig is simple and low cost. It makes possible the measurement of the frequency response function (FRF) between output voltage and input acceleration. Design requirements for the testing rig are reported and a validation of the realized system is presented. A multimodal mathematical model is developed in MATLAB to simulate the impulse response of the harvester and in particular to stress the effect of higher order modes. Results show the dominance of the fundamental mode in the response of the tested harvesters. Calculated and experimental results are in good agreement.

Author(s):  
M. Santise ◽  
K. Thoeni ◽  
R. Roncella ◽  
S. W. Sloan ◽  
A. Giacomini

This paper presents preliminary tests of a new low-cost photogrammetric system for 4D modelling of large scale areas for civil engineering applications. The system consists of five stand-alone units. Each of the units is composed of a Raspberry Pi 2 Model B (RPi2B) single board computer connected to a PiCamera Module V2 (8 MP) and is powered by a 10 W solar panel. The acquisition of the images is performed automatically using Python scripts and the OpenCV library. Images are recorded at different times during the day and automatically uploaded onto a FTP server from where they can be accessed for processing. Preliminary tests and outcomes of the system are discussed in detail. The focus is on the performance assessment of the low-cost sensor and the quality evaluation of the digital surface models generated by the low-cost photogrammetric systems in the field under real test conditions. Two different test cases were set up in order to calibrate the low-cost photogrammetric system and to assess its performance. First comparisons with a TLS model show a good agreement.


2022 ◽  
Vol 14 (2) ◽  
pp. 863
Author(s):  
Chenchen Li ◽  
Shifu Liu ◽  
Hongduo Zhao ◽  
Yu Tian

To advance the development of piezoelectric energy harvesters, this study designed and manufactured bridge-unit-based and pile-unit-based piezoelectric devices. An indoor material testing system and accelerated pavement test equipment were used to test the electrical performance, mechanical performance, and electromechanical coupling performance of the devices. The results showed that the elastic modulus of the pile structure device was relatively higher than that of the bridge structure device. However, the elastic modulus of the two devices should be improved to avoid attenuation in the service performance and fatigue life caused by the stiffness difference. Furthermore, the electromechanical conversion coefficients of the two devices were smaller than 10% and insensitive to the load magnitude and load frequency. Moreover, the two devices can harvest 3.4 mW and 2.6 mW under the wheel load simulated by the one-third scale model mobile load simulator, thus meeting the supply requirements of low-power sensors. The elastic modulus, electromechanical conversion coefficients, and electric performance of the pile structure device were more reliable than those of the bridge structure device, indicating a better application prospect in road engineering.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rahmat Zaki Auliya ◽  
Poh Choon Ooi ◽  
Rad Sadri ◽  
Noor Azrina Talik ◽  
Zhi Yong Yau ◽  
...  

AbstractA new 2D titanium carbide (Ti3C2), a low dimensional material of the MXene family has attracted remarkable interest in several electronic applications, but its unique structure and novel properties are still less explored in piezoelectric energy harvesters. Herein, a systematic study has been conducted to examine the role of Ti3C2 multilayers when it is incorporated in the piezoelectric polymer host. The 0.03 g/L of Ti3C2 has been identified as the most appropriate concentration to ensure the optimum performance of the fabricated device with a generated output voltage of about 6.0 V. The probable reasons might be due to the uniformity of nanofiller distribution in the polyvinylidene difluoride (PVDF) and the incorporation of Ti3C2 in a polymer matrix is found to enhance the β-phase of PVDF and diminish the undesired α-phase configuration. Low tapping frequency and force were demonstrated to scavenge electrical energy from abundant mechanical energy resources particularly human motion and environmental stimuli. The fabricated device attained a power density of 14 µW.cm−2 at 10.8 MΩ of load resistor which is considerably high among 2D material-based piezoelectric nanogenerators. The device has also shown stable electrical performance for up to 4 weeks and is practically able to store energy in a capacitor and light up a LED. Hence, the Ti3C2-based piezoelectric nanogenerator suggests the potential to realize the energy harvesting application for low-power electronic devices.


2019 ◽  
Vol 30 (20) ◽  
pp. 3025-3035
Author(s):  
Hamed Salmani ◽  
GH Rahimi ◽  
Sajad Saraygord Afshari

During the past years, the development of piezoelectric energy harvesters is extensively increased for providing the required energy of sensor nodes. It has been proven that changing the beam’s cross-section along its length direction may lead to extract more power with less mass. In this article, a hybrid metaheuristic algorithm called tabu continuous ant colony system is employed to optimize the tapered piezoelectric energy harvester in a fast and course manner. The exponential and fourth-order polynomial functions are considered as shaping functions for tapering the beam’s width along its length direction. An experiment is also set up to evaluate the performance of the optimization algorithm for the case of exponential shaping function. Finally, the algorithm is applied to optimize the voltage and power per mass of both shaping functions of the tapered piezoelectric energy harvester at the specified excitation frequency.


2019 ◽  
Vol 33 (18) ◽  
pp. 1950192 ◽  
Author(s):  
Hossein Ghoddus ◽  
Zoheir Kordrostami ◽  
Peyman Amiri

In the present paper, guided four beam (G4B) piezoelectric transducers with enhanced sensitivities have been designed. Based on the suggested G4B structures, piezoelectric energy harvesters (PEHs) and acceleration transducers with higher voltages than their previously reported counterparts and with lower displacements than the single-cantilever PEHs (SC-PEHs) have been proposed. We have shown that it is possible to arrive at much more output voltages in comparison with the conventional PEHs by redesigning the structure of the cantilever beams. In 1 g acceleration, the maximum output voltage obtained from the proposed PEHs has been 13.49 V whereas the output voltage for the conventional G4B-PEH is 2.87 V. This paper for the first time proposes G4B-PEHs with smaller displacements and larger voltages compared to a SC-PEH. The same G4B framework has been studied as a piezoelectric acceleration transducer. The effect of piezoelectric length on the extracted voltage in both unimorph and bimorph cantilevers has been discussed and the optimized length has been calculated. An analytical method is developed to compute the resonance frequencies of different beam shapes whose results are in a good agreement with numerical simulations.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Michael W. Shafer ◽  
Ephrahim Garcia

The fundamental limits of cantilevered piezoelectric energy harvesters have not been well established. As with any other power generation technology, it is critical to establish the limits of power output and efficiency. Mathematical models for piezoelectric energy harvester power output have seen continued refinement, but these models have mainly been used and compared to individual harvester designs. Moreover, existing models all assume power scales with acceleration input, and take no account for the upper limit of the acceleration due to the ultimate strength of the piezoelectric material. Additionally, models for efficiency have been developed, but the limits have not been thoroughly explored. In this paper, we present the upper limits of input acceleration and output power for a piezoelectric harvester device. We then use these expressions, along with a previously developed ideal design method, to explore the upper limits of power production across a range of system masses and excitation frequencies. We also investigate general efficiency limits of these devices. We show the upper limit using an existing model and develop an alternate model that is applicable to excitation sources that are not capable of energy recovery.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
R. Lo Frano ◽  
G. Forasassi

The strength of thin shells, under external pressure, is highly dependent by the nature of imperfection. This paper investigates buckling behaviour of imperfect thin cylindrical shells with analytical, numerical, and experimental methods in conditions for which, at present, a complete theoretical analysis was not found in literature. In general, collapse is initiated by yielding, but interaction with geometrical instabilities is meaningful, in that imperfections reduce the load bearing capacity by an amount of engineering significance also when thickness is considerable. The aim of this study was to conduct experiments that are representative of buckling, in the context of NPP applications as, for instance, the IRIS (international reactor innovative and secure) and LWR steam generator (SG) tubes. At Pisa University, a research activity is being carried out on the buckling of thin walled metal specimen, with a test equipment (and the necessary data acquisition facility) as well as numerical models were set up by means FEM code. The experiments were conducted on A-316 test specimens, tubes with and without longitudinal welding. The numerical and experimental results comparison highlighted the influence of different types of imperfections on the buckling loads with a good agreement between the finite-element predictions and the experimental data.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3733 ◽  
Author(s):  
Zongxian Yang ◽  
Sid Zarabi ◽  
Egon Fernandes ◽  
Maria-Isabel Rua-Taborda ◽  
Hélène Debéda ◽  
...  

Real time electricity monitoring is critical to enable intelligent and customized energy management for users in residential, educational, and commercial buildings. This paper presents the design, integration, and testing of a simple, self-contained, low-power, non-invasive system at low cost applicable for such purpose. The system is powered by piezoelectric energy harvesters (EHs) based on PZT and includes a microcontroller unit (MCU) and a central hub. Real-time information regarding the electricity consumption is measured and communicated by the system, which ultimately offers a dependable and promising solution as a wireless sensor node. The dynamic power management ensures the system to work with different types of PZT EHs at a wide range of input power. Thus, the system is robust against fluctuation of the current in the electricity grid and requires minimum adjustment if EH unit requires exchange or upgrade. Experimental results demonstrate that this unit is in a position to read and transmit 60 Hz alternating current (AC) sensor signals with a high accuracy no less than 91.4%. The system is able to achieve an operation duty cycle from <1 min up to 18 min when the current in an electric wire varies from 7.6 A to 30 A, depending on the characteristics of different EHs and intensity of current being monitored.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 648
Author(s):  
Juan J. Villacorta ◽  
Lara del-Val ◽  
Roberto D. Martínez ◽  
José-Antonio Balmori ◽  
Álvaro Magdaleno ◽  
...  

This paper presents the design, development and testing of a low-cost Structural Health Monitoring (SHM) system based on MEMS (Micro Electro-Mechanical Systems) triaxial accelerometers. A new control system composed by a myRIO platform, managed by specific LabVIEW software, has been developed. The LabVIEW software also computes the frequency response functions for the subsequent modal analysis. The proposed SHM system was validated by comparing the data measured by this set-up with a conventional SHM system based on piezoelectric accelerometers. After carrying out some validation tests, a high correlation can be appreciated in the behavior of both systems, being possible to conclude that the proposed system is sufficiently accurate and sensitive for operative purposes, apart from being significantly more affordable than the traditional one.


Sign in / Sign up

Export Citation Format

Share Document