Neural-Based Control of Compliant Foils With Spanwise Flexibility

Author(s):  
Annika-verena Haecker ◽  
Gabriel N. Carryon ◽  
James L. Tangorra ◽  
Thomas Sattel

Abstract The ability to change the spatial distribution of a compliant foil’s flexural rigidity can enhance the foil’s swimming performance capabilities but pose challenges to neural-based control of these types of foils. The same property that makes these foil’s effective propulsors also makes them challenging to control with a neural oscillator, namely the variation in the mechanical properties will cause the amplitude and phase of the sensory feedback signal to vary depending upon the placement of the sensor. In this study we investigate the effect of sensor placement on the entrainment characteristics of a coupled-system consisting of a neural oscillator driving a series of compliant foils with spanwise flexibility (i.e. spatially varying mechanical properties in the dorsal-ventral direction). We find that acquiring sensory feedback from the foil’s stiff region produces a broader range of frequencies over which entrainment occurs compared to acquiring feedback from the compliant region of a foil. Additionally, we characterize the thrust and lift forces generated by spanwise foils as a function of the foil’s flapping frequency and flexural rigidity.

Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


1986 ◽  
Vol 14 (4) ◽  
pp. 264-291
Author(s):  
K. L. Oblizajek ◽  
A. G. Veith

Abstract Treadwear is explained by specific mechanical properties and actions of tires. Rubber shear stresses in the contact zone between the tire and the road become large at large slip angles. When normal stresses are insufficient to prevent sliding at the rear of the footprint, wear occurs at a rate that depends on test severity. Two experimental approaches are described to relate treadwear to tire characteristics. The first uses transducers imbedded in a simulated road surface to obtain direct measurements of contact stresses on the loaded, freely-rolling, steered tires. The second approach is developed with the aid of a simple carcass, tread-band, tread-rubber tire model. Various tire structural configurations; characterized by carcass spring rate, edgewise flexural band stiffness, and tread rubber shear stiffness; are simulated and lateral shear stress response in the contact zone is determined. Tires featuring high band stiffness and low carcass stiffness generate lower lateral shear stress levels. Furthermore, coupling of tread-rubber stiffness and band flexural rigidity are important in determining level of shear stresses. Laboratory measurements with the described apparatus produced values of tread-band bending and carcass lateral stiffness for several tire constructions. Good correlation is shown between treadwear and a broad range of tire stiffness and test course severities.


2021 ◽  
Author(s):  
Maaruf Hussain ◽  
Abduljamiu Amao ◽  
Khalid Al-Ramadan ◽  
Sunday Olatunji ◽  
Ardiansyah Negara

Abstract The knowledge of rock mechanical properties is critical to reducing drilling risk and maximizing well and reservoir productivity. Rock chemical composition, their spatial distribution, and porosity significantly influenced these properties. However, low porosity characterized unconventional reservoirs as such, geochemical properties considerably control their mechanical behavior. In this study, we used chemostratigraphy as a correlation tool to separate strata in highly homogenous formations where other traditional stratigraphic methods failed. In addition, we integrated the chemofacies output and reduced Young's modulus to outline predictable associations between facies and mechanical properties. Thus, providing better understanding of lithofacies-controlled changes in rock strength that are useful inputs for geomechanical models and completions stimulations.


Author(s):  
Kohta Nakahira ◽  
Hironori Tago ◽  
Fumiaki Endo ◽  
Ken Suzuki ◽  
Hideo Miura

Since the thickness of the stacked silicon chips in 3D integration has been thinned to less than 100 μm, the local thermal deformation of the chips has increased drastically because of the decrease of the flexural rigidity of the thinned chips. The clear periodic thermal deformation and thus, the thermal residual stress distribution appears in the stacked chips due to the periodic alignment of metallic bumps, and they deteriorate the reliability of products. In this paper, the dominant structural factors of the local residual stress in a silicon chip are discussed quantitatively based on the results of a three-dimensional finite element analysis and the measurement of the local residual stress in a chip using stress sensor chips. The piezoresistive strain gauges were embedded in the sensor chips. The length of each gauge was 2 μm, and an unit cell consisted of 4 gauges with different crystallographic directions. This alignment of strain gauges enables to measure the tensor component of three-dimensional stress fields separately. Test flip chip substrates were made by silicon chip on which the area-arrayed tin/copper bumps were electroplated. The width of a bump was fixed at 200 μm, and the bump pitch was varied from 400 μm to 1000 μm. The thickness of the copper layer was about 40 μm and that of tin layer was about 10 μm. This tin layer was used for the rigid joint formation by alloying with copper interconnection formed on a stress sensing chip. The measured amplitude of the residual stress increased from about 30 MPa to 250 MPa depending on the combination of materials such as bump, underfill, and interconnections. It was confirmed that both the material constant of underfill and the alignment structure of fine bumps are the dominant factors of the local deformation and stress of a silicon chip mounted on area-arrayed metallic bumps. It was also confirmed experimentally that both the hound’s-tooth alignment between a TSV (Through Silicon Via) and a bump and control of mechanical properties of electroplated copper thin films used for the TSV and bump is indispensable in order to minimize the packaging-induced stress in the three-dimensionally mounted chips. This test chip is very effective for evaluating the packaging-process induced stress in 3D stacked chips quantitatively.


2018 ◽  
Vol 25 (4) ◽  
pp. 797-805 ◽  
Author(s):  
R.S. Jayaram ◽  
V.A. Nagarajan ◽  
K.P. Vinod Kumar

Abstract Honeycomb sandwich panels entice continuously enhanced attention due to its excellent mechanical properties and multi-functional applications. However, the principal problem of sandwich panels is failure by face/core debond. Novel lightweight sandwich panels with hybrid core made of honeycomb, foam and through-thickness pin was developed. Reinforcing polyester pins between faces and core is an effectual way to strengthen the core and enhance the interfacial strength between the face/core to improve the structural performance of sandwich panels. To provide feasibility for pin reinforcement, honeycomb core was pre-filled with foam. Mechanical properties enhancement due to polyester pinning were investigated experimentally under flatwise compression, edgewise compression and flexural test. The experimental investigations were carried out for both “foam filled honeycomb sandwich panels” (FHS) and “polyester pin-reinforced foam filled honeycomb sandwich panels” (PFHS). The results show that polyester pin reinforcement in foam filled honeycomb sandwich panel enhanced the flatwise, edgewise compression and flexural properties considerably. Moreover, increasing the pin diameter has a larger effect on the flexural rigidity of PFHS panels. PFHS panels have inconsequential increase in weight but appreciably improved their structural performance.


2018 ◽  
Vol 30 (5) ◽  
pp. 859-871 ◽  
Author(s):  
Dan Xia ◽  
Wei-shan Chen ◽  
Jun-kao Liu ◽  
Xiang Luo

Geology ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 99-102
Author(s):  
C. Grace Barcheck ◽  
Susan Y. Schwartz ◽  
Slawek Tulaczyk

Abstract Icequakes radiating from an ice-stream base provide insights into otherwise difficult to observe sub-kilometer-scale basal heterogeneity. We detect basal icequakes beneath an ∼3-km-wide seismic sensor network installed on the Whillans Ice Plain (WIP) in West Antarctica, and we use S-wave back-projection to detect and locate thousands of basal icequakes occurring over 14 and 21 days in January 2014 and 2015, respectively. We find flow-parallel streaks of basal icequakes beneath the WIP, which we conjecture are related to the presence of mega-scale glacial lineations (MSGLs) indicated by ice-penetrating radar, with at least one streak originating in a local trough adjacent to a MSGL. Patterned basal seismicity can be caused by systematic spatial variation in basal pore pressure, bed-material frictional properties, or both. We interpret these flow-parallel icequake streaks as being due to frictionally heterogeneous bed materials in the presence of a streamlined ice-stream bed: bedform ridges correspond to aseismic, high-porosity deforming till, and some troughs to ephemeral exposures of deeper, seismogenic material such as lodged till or older sediments or rocks. Our results are consistent with MSGL formation by either erosion in troughs to expose deeper seismogenic material, or deposition of aseismic high-porosity till in bedform highs. Our results also suggest that evolving subglacial geomorphology can impact basal traction by reorganizing the spatial distribution of basal materials with varying mechanical properties.


2001 ◽  
Vol 7 (S2) ◽  
pp. 264-265
Author(s):  
H. A. Calderon ◽  
M. Benyoucef ◽  
N. Clement

The excellent mechanical properties of Ni based superalloys depend upon the presence of γ’ particles (LI2 structure). Their volume fraction, spatial distribution and size determine the mechanical strength of these alloys. Ni alloys for technological applications make use of large volume fractions of precipitates where processes of coarsening and coalescence take place during service leading in some cases to deterioration of properties. Addition of different alloying elements prevents accelerated coalescence by retarding diffusion and thus improving the mechanical properties of such alloys. Coalescence can also take place under the influence of an applied stress leading to the formation of rafts of the y' phase. For example the microstructure changes during creep deformation, depending on the alloy composition, with the corresponding formation of dislocation networks and rafts of different morphologies [1]. The γ-γ’ interfaces are also different depending on the alloy composition and most likely to the local distribution of alloying elements and their strain fields.


2018 ◽  
Author(s):  
J. Flaherty ◽  
Z. Feng ◽  
Z. Peng ◽  
Y.-N. Young ◽  
A. Resnick

ABSTRACTThe stochastic tip dynamics of a primary cilium held within an optical trap is quantified by combining experimental, analytical and computational tools. Primary cilia are cellular organelles, present on most vertebrate cells, hypothesized to function as a fluid flow sensor. The mechanical properties of a cilium remain incompletely characterized. We measured the fluctuating position of an optically trapped cilium tip under untreated, Taxol-treated, and HIF-stabilized conditions. We applied analytical modeling to derive the mean-squared displacement of the trapped tip of a cilium and compared the results with experimental measurements. We provide, for the first time, evidence that the effective flexural rigidity of a ciliary axoneme is length-dependent, and longer cilia are stiffer than shorter cilia. We then provide a rational explanation for both effects. We demonstrate that the apparent length-dependent flexural rigidity can be understood by a combination of modeling axonemal microtubules orthotropic elastic shells and including (actin-driven) active stochastic basal body motion. It is hoped that our improved characterization of cilia will result in deeper understanding of the biological function of cellular flow sensing by this organelle. Our model could be profitably applied to motile cilia and our results also demonstrate the possibility of using easily observable ciliary dynamics to probe interior cytoskeletal dynamics.


Sign in / Sign up

Export Citation Format

Share Document