Comparison of Different Codes and Standards Applicable for Design and Calculation of High Pressure Equipment

Author(s):  
Johannes Schedelmaier ◽  
Manfred Po¨lzl

Depending on the plant location for a new project different Codes and Standards are applied for design and calculation of high pressure equipment. Many countries do not have a specific code for high pressure vessels and components, respectively the high pressure used in petrochemical plant is out of the code range. In this case the purchaser or the process licensor determines the code to be applied on the equipment for the new plant. This paper provides a technical analysis and comparison for high pressure components calculated according to the following codes: ASME VIII, AD 2000 and CODAP 95. Design and calculation results according to the different codes are verified on an example of a double pipe heat exchanger using identical mechanical properties of materials and the same operating conditions. The results are illustrated on figures for different low pressure and high pressure components. The literature does not define a limit between low pressure, high pressure and ultra high pressure. As the difference between steam pressure in the jacket (3,3MPa), pressure in the process tube (50 MPa, 160 MPa, 360 MPa) and autofrettage pressure (1000MPa) is very significant, this sequence is applied in the paper. Economic aspects are more and more important for new projects in order to minimize costs for high sophisticated equipment. For this reason also a cost analysis was performed for the calculation examples and the economic impact of application of different codes is indicated on a diagram. The technical–economical evaluation leads to an optimised product.

Author(s):  
Wenjing Zhao ◽  
Dapeng Hu ◽  
Peiqi Liu ◽  
Yuqiang Dai ◽  
Jiupeng Zou ◽  
...  

A pressure-exchange ejector transferring energy by compression and expansion waves has the potential for higher efficiency. The width and position of each port are essential in pressure-exchange ejector design. A dimensionless time τ expressing both port widths and the positions of port ends was introduced. A prototype was designed and the experimental system was set up. Many sets of experiment with different geometrical arrangements were conducted. The results suggest that the efficiency greatly changes with the geometrical arrangements. The efficiency is about 60% at proper port widths and positions, while at improper geometrical arrangements, the efficiency is much lower and the maximum deviation may reach about 20%. The proper dimensionless port widths and positions at different operating conditions are obtained. For a fixed overall pressure ratio, the widths of the high pressure flow inlet and middle pressure flow outlet increase as the outlet pressure increases and the low pressure flow inlet width is reduced with a larger outlet pressure. The middle pressure flow outlet (MO) opening end remains constant at different outlet pressures. The positions of the high pressure flow inlet (HI) closed end and the low pressure flow inlet (LI) open end increase with the elevation of outlet pressure, however, the distance between the HI closing end and the LI opening end is constant. The port widths and positions have a significant influence on the performance of the pressure-exchange ejector. The dimensionless data obtained are very valuable for pressure-exchange ejector design and performance optimization.


Author(s):  
Jan Keltjens ◽  
Philip Cornelissen ◽  
Peter Koerner ◽  
Waldemar Hiller ◽  
Rolf Wink

The ASME Section VIII Division 3 Pressure Vessel Design Code adopted in its 2004 edition a significant change of the design margin against plastic collapse. There are several reasons and justifications for this code change, in particular the comparison with design margins used for high pressure equipment in Europe. Also, the ASME Pressure Vessel Code books themselves are not always consistent with respect to design margin. This paper discusses not only the background material for the code change, but also gives some practical information on when pressure vessels could be designed to a thinner wall.


Author(s):  
J. M. Lardon ◽  
T. Poulain

Maraging stainless steels offer a large panel of high strength materials with good ductility and stress corrosion cracking resistance. Their mechanical properties compared to conventional 15-5 PH and 17-4 PH martensitic stainless steels show much better yield strength / toughness compromise for yield strength exceeding 1300 MPa. In the same time, fatigue resistance is significantly increased at high strength stress levels and material keeps good resistance to stress corrosion. These properties make them particularly suitable for ultra-high pressure equipment or high pressure rotating components submitted to high cyclic stresses. Their application for Pascalisation pressure vessels and ultra-high pressure compressors for ethylene gas is briefly presented.


Author(s):  
J. C. Barnes ◽  
A. M. Mellor

Lean premixed combustor manufacturers require premixer concepts that provide homogeneity (mixedness) of the fuel which burns in the main flame. Ideally premixer evaluation would be conducted under realistic combustor operating conditions. However, current techniques typically are limited to cold—flow, low pressure (<14 atm) conditions or comparison of measured NOx emissions with others obtained in premixed systems. Thus, a simple, consistent method for quantifying unmixedness in lean premixed combustors operating at high pressure, fired operating conditions is proposed here, using the characteristic time model developed in the companion paper.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880960 ◽  
Author(s):  
Xianqing Shen ◽  
Kai Shen ◽  
Zhendong Zhang

The effects of high-pressure and low-pressure exhaust gas recirculation on engine and turbocharger performance were investigated in a turbocharged gasoline direct injection engine. Some performances, such as engine combustion, fuel consumption, intake and exhaust, and turbocharger operating conditions, were compared at wide open throttle and partial load with the high-pressure and low-pressure exhaust gas recirculation systems. The reasons for these changes are analyzed. The results showed EGR system of gasoline engine could optimize the cylinder combustion, reduce pumping mean effective pressure and lower fuel consumption. Low-pressure exhaust gas recirculation system has higher thermal efficiency than high-pressure exhaust gas recirculation, especially on partial load condition. The main reasons are as follows: more exhaust energy is used by the turbocharger with low-pressure exhaust gas recirculation system, and the lower exhaust gas temperature of engine would optimize the combustion in cylinder.


2005 ◽  
Vol 73 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Redhouane Henda ◽  
Daniel J. Falcioni

Heat transfer in a two-dimensional moving packed bed consisting of pellets surrounded by a gaseous atmosphere is numerically investigated. The governing equations are formulated based on the volume averaging method. A two-equation model, representing the solid and gas phases separately, and a one-equation model, representing both the solid and gas phases, are considered. The models take the form of partial differential equations with a set of boundary conditions, some of which were determined experimentally, and design parameters in addition to the operating conditions. We examine and discuss the parameters in order to reduce temperature differences from pellet to pellet. The calculation results show that by adopting a constant temperature along the preheater outer wall and decreasing the velocity of the pellets in the preheater, the difference in temperature from pellet to pellet is reduced from ∼120°C to ∼55°C, and the thermal efficiency of the preheater is tremendously improved.


Author(s):  
Ozgur Balli

AbstractA conventional and advanced exergy analysis of a turbofan engine is presented in this paper. In this framework, the main exergy parameters of the engine components are introduced while the exergy destruction rates within the engine components are split into endogenous/exogenous and avoidable/unavoidable parts. Also, the mutual interdependencies among the components of the engine and realistic improvement potentials depending on operating conditions are acquired through the analysis. As a result of the study, the exergy efficiency values of the engine are determined to be 25.7 % for actual condition, 27.55 % for unavoidable condition and 30.54 % for theoretical contion, repectively. The system has low improvement potential because the unavoidable exergy destruction rate is 90 %. The relationships between the components are relatively weak since the endogenous exergy destruction is 73 %. Finally, it may be concluded that the low pressure compressor, the high pressure compressor, the fan, the low pressure compressor, the high pressure compressor and the combustion chamber of the engine should be focused on according to the results obtained.


1987 ◽  
Vol 50 (1) ◽  
pp. 28-37 ◽  
Author(s):  
RUTH BANDLER ◽  
PARIS M. BRICKEY ◽  
STANLEY M. CICHOWICZ ◽  
JOHN S. GECAN ◽  
PHILIP B. MISLIVEC

Two studies were done to determine the effects of processing equipment on Howard mold and rot fragment counts of tomato catsup. In a pilot plant study in 1980, batches of catsup with known cut-out rot levels were produced and processed through various types of comminution equipment. Urschel and Fitzpatrick mills and homogenizers at 500 to 700 and 1500 to 2000 psi increased mold counts more than twofold over the range of data obtained. Contrary to previous reports, Urschel mills increased rot counts significantly. A nationwide survey was conducted in 1983 to determine if similar effects would be found with well-characterized commercial products. Data were obtained on inline and finished products from 164 lots of catsup produced at 16 plants located across the country. Urschel and Fitzpatrick mills tended to increase mold counts over twofold and caused a slight increase in rot counts. High pressure homogenizers (≥2000 psi) tended to decrease mold counts; low pressure homogenizers (&lt;2000 psi) increased them. Homogenization at any pressure reduced rot counts dramatically. Although mold counts were highest for catsup produced in the eastern United States and lowest for catsup produced in the West, milling and low pressure homogenization were also most prevalent in the East and least prevalent in the West. When the effects of these types of comminution were removed, the difference between regions diminished. Compared with the norm, rainfall levels for the growing regions involved in this survey were fairly typical.


Author(s):  
Giovan Battista Trinca ◽  
Nicola Ronchi ◽  
Fausto Fusari ◽  
Emanuele Fiordaligi

Abstract Components that are subject to pressure, typical of the pressure vessel industry, can be designed using such calculation methods as “Design by Rule-DBF” or “Design by Analysis-DBA”. DBA, based on the FEM, is used increasingly often because, in addition to providing a reduction in thickness due to the lower uncertainty on the calculation, it helps to verify and study physical phenomena and complex geometry that are otherwise difficult to research while offering a more intuitive usability of the results. In this paper we wish to offer, in an educative and qualitative manner, a general overview of DBA from the creation of the model to obtaining the results, describing the types of analysis that can be carried out according to the constitutive model of the material used and the degree of accuracy that can be achieved. At the end, we cover some case studies in which DBA has been successfully used to verify design or particular conditions (such as heat treatments) for pressure vessels fabrication. The DBA calculation, described in this paper, is used with the same computational methods for high, medium or low pressure components, but it is clear that the most significant reduction in thickness is for high pressure components such as reactors, which is why the DBA calculation is particularly appreciated for this type of equipment. In the context of this paper “high pressure equipment” means when the ratio of the inner diameter to thickness of the walls is &lt; 30.


1950 ◽  
Vol 162 (1) ◽  
pp. 149-166 ◽  
Author(s):  
L. J. Kastner ◽  
J. R. Spooner

The air ejector, in its various forms, is a device which has many applications in engineering practice, and several attempts have been made to analyse its mode of action, some of these having been supported by experimental work. Most of the experimental results available are related to ejectors in which relatively high-pressure steam is utilized as the driving fluid, but even in these cases the information provided is restricted to a narrow field. The investigation described relates to an air ejector employing as the driving fluid air at a relatively low pressure, not exceeding 40 lb. per sq. in. (abs.), and covering a wide range of operating conditions by means of interchangeable nozzles. Two distinct experimental arrangements were built—one for the set of conditions in which the ejector draws in a relatively small quantity of suction fluid and pumps it through a relatively high pressure-ratio, and the other covering conditions in which the quantity of suction fluid is much larger, but the pressure ratio is quite small. For a given initial pressure and quantity of driving fluid, the rate of mass flow of suction fluid depends chiefly on the diameter of the combining tube, in which the driving and suction fluids mix; in the experiments, the ratio of com-bining-tube area to driving-nozzle area was varied in twelve steps, covering a range of area ratios from 1·44 to 1,110·0, and compression ratios ranging from about 3 to about 1·001. Efforts were made to find the best proportions of those parts of the ejector which exert a major influence on performance, and certain conclusions are drawn from the results of the experiments. Theoretical aspects of the problem are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document