scholarly journals A Tetrahydrofolate-Dependent Methyltransferase Catalyzing the Demethylation of Dicamba in Sphingomonas sp. Strain Ndbn-20

2016 ◽  
Vol 82 (18) ◽  
pp. 5621-5630 ◽  
Author(s):  
Li Yao ◽  
Lin-Lu Yu ◽  
Jun-Jie Zhang ◽  
Xiang-Ting Xie ◽  
Qing Tao ◽  
...  

ABSTRACTSphingomonassp. strain Ndbn-20 degrades and utilizes the herbicide dicamba as its sole carbon and energy source. In the present study, a tetrahydrofolate (THF)-dependent dicamba methyltransferase gene,dmt, was cloned from the strain, and three other genes,metF,dhc, andpurU, which are involved in THF metabolism, were found to be located downstream ofdmt. A transcriptional study revealed that the four genes constituted one transcriptional unit that was constitutively transcribed. Lysates of cells grown with glucose or dicamba exhibited almost the same activities, which further suggested that thedmtgene is constitutively expressed in the strain. Dmt shared 46% and 45% identities with the methyltransferases DesA and LigM fromSphingomonas paucimobilisSYK-6, respectively. The purified Dmt catalyzed the transfer of methyl from dicamba to THF to form the herbicidally inactive metabolite 3,6-dichlorosalicylic acid (DCSA) and 5-methyl-THF. The activity of Dmt was inhibited by 5-methyl-THF but not by DCSA. The introduction of a codon-optimizeddmtgene intoArabidopsis thalianaenhanced resistance against dicamba. In conclusion, this study identified a THF-dependent dicamba methyltransferase, Dmt, with potential applications for the genetic engineering of dicamba-resistant crops.IMPORTANCEDicamba is a very important herbicide that is widely used to control more than 200 types of broadleaf weeds and is a suitable target herbicide for the engineering of herbicide-resistant transgenic crops. A study of the mechanism of dicamba metabolism by soil microorganisms will benefit studies of its dissipation, transformation, and migration in the environment. This study identified a THF-dependent methyltransferase, Dmt, capable of catalyzing dicamba demethylation inSphingomonassp. Ndbn-20, and a preliminary study of its enzymatic characteristics was performed. Introduction of a codon-optimizeddmtgene intoArabidopsis thalianaenhanced resistance against dicamba, suggesting that thedmtgene has potential applications for the genetic engineering of herbicide-resistant crops.

Planta ◽  
2021 ◽  
Vol 253 (5) ◽  
Author(s):  
Marciel Pereira Mendes ◽  
Richard Hickman ◽  
Marcel C. Van Verk ◽  
Nicole M. Nieuwendijk ◽  
Anja Reinstädler ◽  
...  

Abstract Main conclusion Overexpression of pathogen-induced cysteine-rich transmembrane proteins (PCMs) in Arabidopsis thaliana enhances resistance against biotrophic pathogens and stimulates hypocotyl growth, suggesting a potential role for PCMs in connecting both biological processes. Abstract Plants possess a sophisticated immune system to protect themselves against pathogen attack. The defense hormone salicylic acid (SA) is an important player in the plant immune gene regulatory network. Using RNA-seq time series data of Arabidopsis thaliana leaves treated with SA, we identified a largely uncharacterized SA-responsive gene family of eight members that are all activated in response to various pathogens or their immune elicitors and encode small proteins with cysteine-rich transmembrane domains. Based on their nucleotide similarity and chromosomal position, the designated Pathogen-induced Cysteine-rich transMembrane protein (PCM) genes were subdivided into three subgroups consisting of PCM1-3 (subgroup I), PCM4-6 (subgroup II), and PCM7-8 (subgroup III). Of the PCM genes, only PCM4 (also known as PCC1) has previously been implicated in plant immunity. Transient expression assays in Nicotiana benthamiana indicated that most PCM proteins localize to the plasma membrane. Ectopic overexpression of the PCMs in Arabidopsis thaliana resulted in all eight cases in enhanced resistance against the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Additionally, overexpression of PCM subgroup I genes conferred enhanced resistance to the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000. The PCM-overexpression lines were found to be also affected in the expression of genes related to light signaling and development, and accordingly, PCM-overexpressing seedlings displayed elongated hypocotyl growth. These results point to a function of PCMs in both disease resistance and photomorphogenesis, connecting both biological processes, possibly via effects on membrane structure or activity of interacting proteins at the plasma membrane.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1055
Author(s):  
Hersh Chaitin ◽  
Michael L. Lu ◽  
Michael B. Wallace ◽  
Yunqing Kang

Many decellularized extracellular matrix-derived whole organs have been widely used in studies of tissue engineering and cancer models. However, decellularizing porcine esophagus to obtain decellularized esophageal matrix (DEM) for potential biomedical applications has not been widely investigated. In this study a modified decellularization protocol was employed to prepare a porcine esophageal DEM for the study of cancer cell growth. The cellular removal and retention of matrix components in the porcine DEM were fully characterized. The microstructure of the DEM was observed using scanning electronic microscopy. Human esophageal squamous cell carcinoma (ESCC) and human primary esophageal fibroblast cells (FBCs) were seeded in the DEM to observe their growth. Results show that the decellularization process did not cause significant loss of mechanical properties and that blood ducts and lymphatic vessels in the submucosa layer were also preserved. ESCC and FBCs grew on the DEM well and the matrix did not show any toxicity to cells. When FBS and ESCC were cocultured on the matrix, they secreted more periostin, a protein that supports cell adhesion on matrix. This study shows that the modified decellularization protocol can effectively remove the cell materials and maintain the microstructure of the porcine esophageal matrix, which has the potential application of studying cell growth and migration for esophageal cancer models.


1993 ◽  
Vol 79 (5) ◽  
pp. 729-735 ◽  
Author(s):  
David Barba ◽  
Joseph Hardin ◽  
Jasodhara Ray ◽  
Fred H. Gage

✓ Gene therapy has many potential applications in central nervous system (CNS) disorders, including the selective killing of tumor cells in the brain. A rat brain tumor model was used to test the herpes simplex virus (HSV)-thymidine kinase (TK) gene for its ability to selectively kill C6 and 9L tumor cells in the brain following systemic administration of the nucleoside analog ganciclovir. The HSV-TK gene was introduced in vitro into tumor cells (C6-TK and 9L-TK), then these modified tumor cells were evaluated for their sensitivity to cell killing by ganciclovir. In a dose-response assay, both C6-TK and 9L-TK cells were 100 times more sensitive to killing by ganciclovir (median lethal dose: C6-TK, 0.1 µg ganciclovir/ml; C6, 5.0 µg ganciclovir/ml) than unmodified wild-type tumor cells or cultured fibroblasts. In vivo studies confirmed the ability of intraperitoneal ganciclovir administration to kill established brain tumors in rats as quantified by both stereological assessment of brain tumor volumes and studies of animal survival over 90 days. Rats with brain tumors established by intracerebral injection of wild-type or HSV-TK modified tumor cells or by a combination of wild-type and HSV-TK-modified cells were studied with and without ganciclovir treatments. Stereological methods determined that ganciclovir treatment eliminated tumors composed of HSV-TK-modified cells while control tumors grew as expected (p < 0.001). In survival studies, all 10 rats with 9L-TK tumors treated with ganciclovir survived 90 days while all untreated rats died within 25 days. Curiously, tumors composed of combinations of 9L and 9L-TK cells could be eliminated by ganciclovir treatments even when only one-half of the tumor cells carried the HSV-TK gene. While not completely understood, this additional tumor cell killing appears to be both tumor selective and local in nature. It is concluded that HSV-TK gene therapy with ganciclovir treatment does selectively kill tumor cells in the brain and has many potential applications in CNS disorders, including the treatment of cancer.


2012 ◽  
Vol 78 (20) ◽  
pp. 7480-7482 ◽  
Author(s):  
Min Yue ◽  
Robert Schmieder ◽  
Robert A. Edwards ◽  
Shelley C. Rankin ◽  
Dieter M. Schifferli

ABSTRACTA novel targeted massive parallel sequencing approach identified genetic variation in eight known or predicted fimbrial adhesins for 46Salmonellastrains. The results highlight associations between specific adhesin alleles, host species, and antimicrobial resistance. The differentiation of allelic variants has potential applications for diagnostic microbiology and epidemiological investigations.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Yawei Xu ◽  
Lihong Dong ◽  
Haidou Wang ◽  
Jiannong Jing ◽  
Yongxiang Lu

Purpose Radio frequency identification tags for passive sensing have attracted wide attention in the area of Internet of Things (IoT). Among them, some tags can sense the property change of objects without an integrated sensor, which is a new trend of passive sensing based on tag. The purpose of this paper is to review recent research on passive self-sensing tags (PSSTs). Design/methodology/approach The PSSTs reported in the past decade are classified in terms of sensing mode, composition and the ways of power supply. This paper presents operation principles of PSSTs and analyzes the characteristics of them. Moreover, the paper focuses on summarizing the latest sensing parameters of PSSTs and their matching equipment. Finally, some potential applications and challenges faced by this emerging technique are discussed. Findings PSST is suitable for long-term and large-scale monitoring compared to conventional sensors because it gets rid of the limitation of battery and has relatively low cost. Also, the static information of objects stored in different PSSTs can be identified by a single reader without touch. Originality/value This paper provides a detailed and timely review of the rapidly growing research in PSST.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jerry Fredy Gomez Cahuata ◽  
Yessica Estefany Rosas-Quina ◽  
Erika Pachari Vera

Purpose The purpose of this paper is to divulge the current knowledge about the nutritional and functional characteristics of Cañihua (Chenopodium pallidicaule Aellen), in addition to its potential applications in the food industry since research studies related to it are still limited compared to other cereals of greater diffusion. Design/methodology/approach The scientific information was collected from Web of Science, Scopus and Google Scholar databases, using keywords such as nutrition value of Chenopodium pallidicaule, amaranth and pseudocereals. Consistent information was selected according to its relevance, year of publication and accuracy with the topic. A total of 49 research papers were selected. Findings Cañihua is a grain with high nutritional potential, considered a superfood because it has a high protein quality, a balanced composition of essential amino acids and unsaturated fatty acids, with a high concentration of linoleic and oleic acid. Besides, it has a good level of bioactive compounds with high antioxidant capacity. However, its production and consumption are limited outside its area of origin, although its cultivation is possible under harsh conditions. Originality/value This paper, through a systematic bibliographic review, highlights the potential of cañihua to be considered in the development of food products with high nutritional and functional value. The information compiled will help researchers and professionals become aware of the importance of this grain and join forces in its processing and enhancement of its attributes.


2021 ◽  
Vol 26 (2) ◽  
pp. 147-170
Author(s):  
Ellen Simon ◽  
Chloé Lybaert

Abstract As a result of growing mobility and migration flows, the number of non-native speakers of Dutch in Belgium and the Netherlands have gradually increased over the past decades and so have the number of people enrolled in Dutch as a Second Language education. While there is huge variation in the profiles of these non-native speakers, they almost exclusively have in common that their Dutch sounds, in some way and at some stage, accented. In line with worldwide trends in foreign language teaching, the pronunciation goal in Dutch as a Second Language education has shifted from native-like to intelligible. Indeed, the notion of intelligibility has become prominent in language teaching and assessment. In this paper, we discuss the complexity of this notion and set it off against related terms like ‘comprehensibility’ and ‘foreign accent’. Through a literature review, we argue that intelligibility is an interactional and context-sensitive phenomenon: it is as much a responsibility of the speaker as it is of the listener or conversational partner(s) in general, whose attitudes will have an impact on the intelligibility and thus on the conversational flow and communicative success. After reviewing literature on the intelligibility of Dutch as a Second Language, we end by formulating some promising lines for future research.


mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Matthew D. Servinsky ◽  
Rebecca L. Renberg ◽  
Matthew A. Perisin ◽  
Elliot S. Gerlach ◽  
Sanchao Liu ◽  
...  

ABSTRACTBacterial fermentation of carbohydrates from sustainable lignocellulosic biomass into commodity chemicals by the anaerobic bacteriumClostridium acetobutylicumis a promising alternative source to fossil fuel-derived chemicals. Recently, it was demonstrated that xylose is not appreciably fermented in the presence of arabinose, revealing a hierarchy of pentose utilization in this organism (L. Aristilde, I. A. Lewis, J. O. Park, and J. D. Rabinowitz, Appl Environ Microbiol 81:1452–1462, 2015,https://doi.org/10.1128/AEM.03199-14). The goal of the current study is to characterize the transcriptional regulation that occurs and perhaps drives this pentose hierarchy. Carbohydrate consumption rates showed that arabinose, like glucose, actively represses xylose utilization in cultures fermenting xylose. Further, arabinose addition to xylose cultures led to increased acetate-to-butyrate ratios, which indicated a transition of pentose catabolism from the pentose phosphate pathway to the phosphoketolase pathway. Transcriptome sequencing (RNA-Seq) confirmed that arabinose addition to cells actively growing on xylose resulted in increased phosphoketolase (CA_C1343) mRNA levels, providing additional evidence that arabinose induces this metabolic switch. A significant overlap in differentially regulated genes after addition of arabinose or glucose suggested a common regulation mechanism. A putative open reading frame (ORF) encoding a potential catabolite repression phosphocarrier histidine protein (Crh) was identified that likely participates in the observed transcriptional regulation. These results substantiate the claim that arabinose is utilized preferentially over xylose inC. acetobutylicumand suggest that arabinose can activate carbon catabolite repression via Crh. Furthermore, they provide valuable insights into potential mechanisms for altering pentose utilization to modulate fermentation products for chemical production.IMPORTANCEClostridium acetobutylicumcan ferment a wide variety of carbohydrates to the commodity chemicals acetone, butanol, and ethanol. Recent advances in genetic engineering have expanded the chemical production repertoire ofC. acetobutylicumusing synthetic biology. Due to its natural properties and genetic engineering potential, this organism is a promising candidate for converting biomass-derived feedstocks containing carbohydrate mixtures to commodity chemicals via natural or engineered pathways. Understanding how this organism regulates its metabolism during growth on carbohydrate mixtures is imperative to enable control of synthetic gene circuits in order to optimize chemical production. The work presented here unveils a novel mechanism via transcriptional regulation by a predicted Crh that controls the hierarchy of carbohydrate utilization and is essential for guiding robust genetic engineering strategies for chemical production.


Author(s):  
Sarah J. Hoffman ◽  
Cheryl L. Robertson

Purpose – The purpose of this paper is to provide a comprehensive perspective of the documented physical and mental health issues Karen refugees from Burma face as a result of war and refugee trauma, and migration. The review will address the question: What is the impact of trauma and migration on the physical and mental health of Karen refugees? Design/methodology/approach – A total of 18 articles were systematically selected for inclusion in the final review. The focal content for included articles includes qualitative and quantitative research representative of the health and migration experiences of Karen refugees. Findings – The findings of this review demonstrate significance for health providers from a public health standpoint as programs and services are targeted to meet the specific health needs of the Karen community. It also highlights the contribution of the Karen forced migration experience to the complexity of individual and community health needs, particularly as a result of the protracted conflict. Originality/value – This critical appraisal of the body of literature describing the health experiences of Karen refugees from Burma, with a particular focus on outcomes relevant to resettlement, demonstrates value as programs are developed with an integrated refugee perspective.


2019 ◽  
Vol 40 (5) ◽  
pp. 313-326 ◽  
Author(s):  
Andrew Martin Cox ◽  
Stephen Pinfield ◽  
Sophie Rutter

Purpose The purpose of this paper is to conceptualise the issues of alignment for changing academic libraries by using and extending McKinsey’s 7S model. Design/methodology/approach Theoretical work was conducted to consider and extend the 7S model for the situation of academic libraries. Empirical data were then used to confirm the value of these extensions and suggest further changes. The data to support the analysis were drawn from 33 interviews with librarians, library and non-library academics and experts, and a survey of UK library staff. Findings In the academic library context, the 7S model can be usefully extended to include three library functions (stuff, space and services) and users. It can also include institutional influences and stakeholders, and aspects of the external environment or situation, including suppliers and allies. The revised model then provides a useful framework within which data about library change can be analysed. Perceived barriers to successful performance fit the model and enable the identification of seven challenges of alignment. Research limitations/implications The resulting model has potential applications such as in the structuring analysis of academic library performance, mapping future directions of development and for exploring variations across the sector and internationally. Practical implications The revised model can be used by practitioners to think through their own strategic position and to act to shape their future, in the light of seven major areas of alignment. Originality/value The paper extends a well-known model used in strategy, to produce a more comprehensive, sector-specific analytic tool.


Sign in / Sign up

Export Citation Format

Share Document