scholarly journals Prospects for the development of fungal vaccines.

1997 ◽  
Vol 10 (4) ◽  
pp. 585-596 ◽  
Author(s):  
G S Deepe

In an era that emphasizes the term "cost-effective," vaccines are the ideal solution to preventing disease at a relatively low cost to society. Much of the previous emphasis has been on childhood scourges such as measles, mumps, rubella, poliomyelitis, and Haemophilus influenzae type b. The concept of vaccines for fungal diseases has had less impact because of the perceived limited problem. However, fungal diseases have become increasingly appreciated as serious medical problems that require recognition and aggressive management. The escalation in the incidence and prevalence of infection has prompted a renewed interest in vaccine development. Herein, I discuss the most recent developments in the search for vaccines to combat fungal infections. Investigators have discovered several inert substances from various fungi that can mediate protection in animal models. The next challenge will be to find the suitable mode of delivery for these immunogens.

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1072
Author(s):  
Raquel Cid ◽  
Jorge Bolívar

To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.


Author(s):  
Anjali Chauhan ◽  
Bani Sarkar ◽  
Kritika Tanwar

Background: Present study was undertaken to do a comparative evaluation of artificial rupture of membrane (ARM) and spontaneous rupture of membrane (SRM) on the course of labour and feto-maternal outcome.Methods: It was prospective interventional randomized comparative study including 120 primigravidae (60 in ARM and SRM group each) with cervical dilatation ≥3 cm and intact membranes. Amniotomy was performed in ARM group after enrolment while no intervention in SRM group. Outcomes noted were duration of labor, mode of delivery, APGAR score, NICU stay.Results: Significant reduction seen in duration of labour in ARM group (p=0.0001). Mean duration of labor was 5.24 hours in ARM group while 6.94 hours in SRM group. No significant difference noted in mode of delivery (p=0.082). No significant adverse feto-maternal outcomes were seen with amniotomy. APGAR score and NICU admission had no significant difference among the two groups.Conclusions: ARM can be opted as an intervention with shorter duration of labour without adversely affecting the feto-maternal outcomes. It is safe, reliable and cost effective modality when employed in primigravida and may be considered as a low-cost accessible intervention to reduce prolonged labour and its associated complications. 


Author(s):  
Marta Poblet

  The unparalleled success of mobile technologies, the emergence of new modes of software and hardware production, and the free circulation of shared knowledge in the Web 2.0 have enabled a new generation of bottom-up, community-based, cost-effective telecommunications initiatives and projects. While these endeavours find their roots in previous hobbyists’ movements (i.e. amateur radio, software hackers, do-it-yourself communities) today's’ initiatives are able to connect, co-produce and share knowledge with world-wide communities, engaging new participants both at the local and the global level. This article reviews recent developments that aim to provide free or low-cost access to telecommunication services in different areas. From Do-It-Yourself (DIY) satellites to mesh networks, these projects tap into the wisdom and resources of communities to offer non-commercial alternatives to present telecommunications services. The technology, organisational, and regulatory challenges they also face cannot be underestimated either. However, in their struggle to find and consolidate new markets, affordable telecommunications reveal that a new digital economy based on co-production could be under way.  


Author(s):  
Magdalena E. Zasłona ◽  
A. Michael Downey ◽  
Peter H. Seeberger ◽  
Oren Moscovitz

The importance of vaccine-induced protection was repeatedly demonstrated over the last three decades and emphasized during the recent COVID-19 pandemic as the safest and most effective way of preventing infectious diseases. Vaccines have controlled, and in some cases, eradicated global viral and bacterial infections with high efficiency and at a relatively low cost. Carbohydrates form the capsular sugar coat that surrounds the outer surface of human pathogenic bacteria. Specific surface-exposed bacterial carbohydrates serve as potent vaccine targets that broadened our toolbox against bacterial infections. Since first approved for commercial use, antibacterial carbohydrate-based vaccines mostly rely on inherently complex and heterogenous naturally derived polysaccharides, challenging to obtain in a pure, safe, and cost-effective manner. The introduction of synthetic fragments identical with bacterial capsular polysaccharides provided well-defined and homogenous structures that resolved many challenges of purified polysaccharides. The success of semisynthetic glycoconjugate vaccines against bacterial infections, now in different phases of clinical trials, opened up new possibilities and encouraged further development towards fully synthetic antibacterial vaccine solutions. In this mini-review, we describe the recent achievements in semi- and fully synthetic carbohydrate vaccines against a range of human pathogenic bacteria, focusing on preclinical and clinical studies.


Author(s):  
Tanwi Singh ◽  
Anshuman Sinha

The major risk associated with low platelet count in pregnancy is the increased risk of bleeding during the childbirth or post that. There is an increased blood supply to the uterus during pregnancy and the surgical procedure requires cutting of major blood vessels. Women with thrombocytopenia are at increased risk of losing excessive blood. The risk is more in case of caesarean delivery as compared to vaginal delivery. Hence based on above findings the present study was planned for Assessment of the Platelet Count in the Pregnant Women in IGIMS, Patna, Bihar. The present study was planned in Department of Pathology, Indira Gandhi Institute of Medical Science, Patna, Bihar, India. The present study was planned from duration of January 2019 to June 2019. In the present study 200 pregnant females samples received for the platelet estimation were enrolled in the present study. Clinically platelet indices can be a useful screening test for early identification of preeclampsia and eclampsia. Also platelet indices can assess the prognosis of this disease in pregnant women and can be used as an effective prognostic marker because it correlates with severity of the disease. Platelet count is a simple, low cost, and rapid routine screening test. Hence the data generated from the present study concludes that platelet count can be used as a simple and cost effective tool to monitor the progression of preeclampsia, thereby preventing complications to develop during the gestational period. Keywords: Platelet Count, Pregnant Women, IGIMS, Patna, Bihar, etc.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


2018 ◽  
Vol 32 (2) ◽  
pp. 103-119
Author(s):  
Colleen M. Boland ◽  
Chris E. Hogan ◽  
Marilyn F. Johnson

SYNOPSIS Mandatory existence disclosure rules require an organization to disclose a policy's existence, but not its content. We examine policy adoption frequencies in the year immediately after the IRS required mandatory existence disclosure by nonprofits of various governance policies. We also examine adoption frequencies in the year of the subsequent change from mandatory existence disclosure to a disclose-and-explain regime that required supplemental disclosures about the content and implementation of conflict of interest policies. Our results suggest that in areas where there is unclear regulatory authority, mandatory existence disclosure is an effective and low cost regulatory device for encouraging the adoption of policies desired by regulators, provided those policies are cost-effective for regulated firms to implement. In addition, we find that disclose-and-explain regulatory regimes provide stronger incentives for policy adoption than do mandatory existence disclosure regimes and also discourage “check the box” behavior. Future research should examine the impact of mandatory existence disclosure rules in the year that the regulation is implemented. Data Availability: Data are available from sources cited in the text.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie

Abstract This paper presents an overview of the general chemical principles underlying the structures, synthesis and technical performance of azo pigments, the dominant chemical class of industrial organic pigments in the yellow, orange, and red shade areas, both numerically and in terms of tonnage manufactured. A description of the most significant historical features in this group of pigments is provided, starting from the discovery of the chemistry on which azo colorants are based by Griess in the mid-nineteenth century, through the commercial introduction of the most important classical azo pigments in the early twentieth century, including products known as the Hansa Yellows, β-naphthol reds, including metal salt pigments, and the diarylide yellows and oranges, to the development in the 1950s and 1960s of two classes of azo pigments that exhibit high performance, disazo condensation pigments and benzimidazolone-based azo pigments. A feature that complicates the description of the chemical structures of azo pigments is that they exist in the solid state as the ketohydrazone rather than the hydroxyazo form, in which they have been traditionally been illustrated. Numerous structural studies conducted over the years on an extensive range of azo pigments have demonstrated this feature. In this text, they are referred to throughout as azo (hydrazone) pigments. Since a common synthetic procedure is used in the manufacture of virtually all azo (hydrazone) pigments, this is discussed in some detail, including practical aspects. The procedure brings together two organic components as the fundamental starting materials, a diazo component and a coupling component. An important reason for the dominance of azo (hydrazone) pigments is that they are highly cost-effective. The syntheses generally involve low cost, commodity organic starting materials and are carried out in water as the reaction solvent, which offers obvious economic and environmental advantages. The versatility of the approach means that an immense number of products may be prepared, so that they have been adapted structurally to meet the requirements of many applications. On an industrial scale, the processes are straightforward, making use of simple, multi-purpose chemical plant. Azo pigments may be produced in virtually quantitative yields and the processes are carried out at or below ambient temperatures, thus presenting low energy requirements. Finally, provided that careful control of the reaction conditions is maintained, azo pigments may be prepared directly by an aqueous precipitation process that can optimise physical form, with control of particle size distribution, crystalline structure, and surface character. The applications of azo pigments are outlined, with more detail reserved for subsequent papers on individual products.


2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 283
Author(s):  
Eyal Seroussi

Determination of the relative copy numbers of mixed molecular species in nucleic acid samples is often the objective of biological experiments, including Single-Nucleotide Polymorphism (SNP), indel and gene copy-number characterization, and quantification of CRISPR-Cas9 base editing, cytosine methylation, and RNA editing. Standard dye-terminator chromatograms are a widely accessible, cost-effective information source from which copy-number proportions can be inferred. However, the rate of incorporation of dye terminators is dependent on the dye type, the adjacent sequence string, and the secondary structure of the sequenced strand. These variable rates complicate inferences and have driven scientists to resort to complex and costly quantification methods. Because these complex methods introduce their own biases, researchers are rethinking whether rectifying distortions in sequencing trace files and using direct sequencing for quantification will enable comparable accurate assessment. Indeed, recent developments in software tools (e.g., TIDE, ICE, EditR, BEEP and BEAT) indicate that quantification based on direct Sanger sequencing is gaining in scientific acceptance. This commentary reviews the common obstacles in quantification and the latest insights and developments relevant to estimating copy-number proportions based on direct Sanger sequencing, concluding that bidirectional sequencing and sophisticated base calling are the keys to identifying and avoiding sequence distortions.


Sign in / Sign up

Export Citation Format

Share Document