scholarly journals Population Dynamics of Escherichia coli Causing Bloodstream Infections over Extended Time Periods

mSphere ◽  
2021 ◽  
Vol 6 (6) ◽  
Author(s):  
Johann D. D. Pitout

Escherichia coli is a leading cause of community-acquired and health care-associated bloodstream infections (BSIs) worldwide. Limited information is available regarding the changes in population dynamics of human E. coli over extended time periods, especially among nonbiased E. coli isolates in large well-defined geographical regions.

2015 ◽  
Vol 59 (4) ◽  
pp. 1962-1968 ◽  
Author(s):  
Sun Hee Park ◽  
Su-Mi Choi ◽  
Dong-Gun Lee ◽  
Sung-Yeon Cho ◽  
Hyo-Jin Lee ◽  
...  

ABSTRACTExtended-spectrum β-lactamase-producingEscherichia coli(ESBL-EC) is increasingly identified as a cause of acute pyelonephritis (APN) among patients without recent health care contact, i.e., community-associated APN. This case-control study compared 75 cases of community-associated ESBL-EC APN (CA-ESBL) to 225 controls of community-associated non-ESBL-EC APN (CA-non-ESBL) to identify the risk factors for ESBL-EC acquisition and investigate the impact of ESBL on the treatment outcomes of community-associated APN (CA-APN) caused byE. coliat a Korean hospital during 2007 to 2013. The baseline characteristics were similar between the cases and controls; the risk factors for ESBL-EC were age (>55 years), antibiotic use within the previous year, and diabetes with recurrent APN. The severity of illness did not differ between CA-ESBL and CA-non-ESBL (Acute Physiology and Chronic Health Evaluation [APACHE] II scores [mean ± standard deviation], 7.7 ± 5.9 versus 6.4 ± 5.3;P= 0.071). The proportions of clinical (odds ratio [OR], 1.76; 95% confidence interval [CI], 0.57 to 5.38;P= 0.323) and microbiological (OR, 1.16; 95% CI, 0.51 to 2.65;P= 0.730) cures were similar, although the CA-ESBL APN patients were less likely to receive appropriate antibiotics within 48 h. A multivariable Cox proportional hazards analysis of the prognostic factors for CA-APN caused byE. colishowed that ESBL production was not a significant factor for clinical (hazard ratio [HR], 0.39; 95% CI, 0.12 to 1.30;P= 0.126) or microbiological (HR, 0.49; 95% CI, 0.21 to 1.12;P= 0.091) failure. The estimates did not change after incorporating weights calculated using propensity scores for acquiring ESBL-EC. Therefore, ESBL production did not negatively affect treatment outcomes among patients with community-associatedE. coliAPN.


2020 ◽  
Vol 64 (8) ◽  
Author(s):  
Inga Fröding ◽  
Badrul Hasan ◽  
Isak Sylvin ◽  
Maarten Coorens ◽  
Pontus Nauclér ◽  
...  

ABSTRACT Invasive infections due to extended-spectrum-β-lactamase- and pAmpC-producing Escherichia coli (ESBL/pAmpC-EC) are an important cause of morbidity, often caused by the high-risk clone sequence type (ST131) and isolates classified as extraintestinal pathogenic E. coli (ExPEC). The relative influence of host immunocompetence versus microbiological virulence factors in the acquisition and outcome of bloodstream infections (BSI) is poorly understood. Herein, we used whole-genome sequencing on 278 blood culture isolates of ESBL/pAmpC-EC from 260 patients with community-onset BSI collected from 2012 to 2015 in Stockholm to study the association of virulence genes, sequence types, and antimicrobial resistance with severity of disease, infection source, ESBL/pAmpC-EC BSI low-risk patients, and patients with repeated episodes. ST131 subclade C2 comprised 29% of all patients. Factors associated with septic shock in multivariable analysis were patient host factors (hematologic cancer or transplantation and reduced daily living activity), presence of the E. coli virulence factor iss (increased serum survival), absence of phenotypic multidrug resistance, and absence of the genes pap and hsp. Adhesins, particularly pap, were associated with urinary tract infection (UTI) source, while isolates from post-prostate biopsy sepsis had a low overall number of virulence operons, including adhesins, and commonly belonged to ST131 clades A, B, and subclade C1, ST1193, and ST648. ST131 was associated with recurrent episodes. In conclusion, the most interesting finding is the association of iss with septic shock. Adhesins are important for UTI pathogenesis, while otherwise low-pathogenic isolates from the microbiota can cause post-prostate biopsy sepsis.


2014 ◽  
Vol 58 (8) ◽  
pp. 4814-4825 ◽  
Author(s):  
Tracy H. Hazen ◽  
LiCheng Zhao ◽  
Mallory A. Boutin ◽  
Angela Stancil ◽  
Gwen Robinson ◽  
...  

ABSTRACTThe IncA/C plasmids have been implicated for their role in the dissemination of β-lactamases, including gene variants that confer resistance to expanded-spectrum cephalosporins, which are often the treatment of last resort against multidrug-resistant, hospital-associated pathogens. AblaFOX-5gene was detected in 14Escherichia coliand 16Klebsiellaisolates that were cultured from perianal swabs of patients admitted to an intensive care unit (ICU) of the University of Maryland Medical Center (UMMC) in Baltimore, MD, over a span of 3 years. Four of the FOX-encoding isolates were obtained from subsequent samples of patients that were initially negative for an AmpC β-lactamase upon admission to the ICU, suggesting that the AmpC β-lactamase-encoding plasmid was acquired while the patient was in the ICU. The genomes of fiveE. coliisolates and sixKlebsiellaisolates containingblaFOX-5were selected for sequencing based on their plasmid profiles. An ∼167-kb IncA/C plasmid encoding the FOX-5 β-lactamase, a CARB-2 β-lactamase, additional antimicrobial resistance genes, and heavy metal resistance genes was identified. Another FOX-5-encoding IncA/C plasmid that was nearly identical except for a variable region associated with the resistance genes was also identified. To our knowledge, these plasmids represent the first FOX-5-encoding plasmids sequenced. We used comparative genomics to describe the genetic diversity of a plasmid encoding a FOX-5 β-lactamase relative to the whole-genome diversity of 11E. coliandKlebsiellaisolates that carry this plasmid. Our findings demonstrate the utility of whole-genome sequencing for tracking of plasmid and antibiotic resistance gene distribution in health care settings.


2020 ◽  
Vol 9 (17) ◽  
Author(s):  
Yishan Yang ◽  
Christopher H. Sommers ◽  
Eyitayo O. Adenipekun ◽  
Marina Ceruso ◽  
Charlene R. Jackson ◽  
...  

Escherichia coli sequence type 131 (ST131) has recently emerged as a leading multidrug-resistant pathogen that causes urinary tract and bloodstream infections in humans. Here, we report the draft genomic sequences of three E. coli ST131 isolates, H45, H43ii, and H43iii, from urine samples of patients in Lagos, Nigeria.


2020 ◽  
Vol 202 (12) ◽  
Author(s):  
Tomokazu Ito ◽  
Diana M. Downs

ABSTRACT Pyridoxal 5′-phosphate (PLP) is the biologically active form of vitamin B6 and an essential cofactor in all organisms. In Escherichia coli, PLP is synthesized via the deoxyxylulose 5-phosphate (DXP)-dependent pathway that includes seven enzymatic steps and generates pyridoxine 5′-phosphate as an intermediate. Additionally, E. coli is able to salvage pyridoxal, pyridoxine, and pyridoxamine B6 vitamers to produce PLP using kinases PdxK/PdxY and pyridox(am)ine phosphate oxidase (PdxH). We found that E. coli strains blocked in PLP synthesis prior to the formation of pyridoxine 5′-phosphate (PNP) required significantly less exogenous pyridoxal (PL) than strains lacking pdxH and identified the conversion of PL to pyridoxine (PN) during cultivation to be the cause. Our data showed that PdxI, shown to have PL reductase activity in vitro, was required for the efficient salvage of PL in E. coli. The pdxI+ E. coli strains converted exogenous PL to PN during growth, while pdxI mutants did not. In total, the data herein demonstrated that PdxI is a critical enzyme in the salvage of PL by E. coli. IMPORTANCE The biosynthetic pathway of pyridoxal 5′-phosphate (PLP) has extensively been studied in Escherichia coli, yet limited information is available about the vitamin B6 salvage pathway. We show that the protein PdxI (YdbC) is the primary pyridoxal (PL) reductase in E. coli and is involved in the salvage of PL. The orthologs of PdxI occur in a wide range of bacteria and plants, suggesting that PL reductase in the B6 salvage pathway is more widely distributed than previously expected.


2014 ◽  
Vol 53 (1) ◽  
pp. 160-166 ◽  
Author(s):  
M. Doumith ◽  
M. Day ◽  
H. Ciesielczuk ◽  
R. Hope ◽  
A. Underwood ◽  
...  

Escherichia colisequence types (STs) 69, 73, 95, and 131 are collectively responsible for a large proportion ofE. coliurinary tract and bloodstream infections, and they differ markedly in their antibiotic susceptibilities. Here, we describe a novel PCR method to rapidly detect and distinguish these lineages. Three hundred eighteen publishedE. coligenomes were compared in order to identify signature sequences unique to each of the four major STs. The specificities of these sequences were assessedin silicoby seeking them in an additional 98 genomes. A PCR assay was designed to amplify size-distinguishable fragments unique to the four lineages and was validated using 515E. coliisolates of known STs. Genome comparisons identified 22 regions ranging in size from 335 bp to 26.5 kb that are unique to one or more of the four predominantE. coliSTs, with two to 10 specific regions per ST. These regions predominantly harbor genes encoding hypothetical proteins and are within or adjacent to prophage sequences. Most (13/22) were highly conserved (>96.5% identity) in the genomes of their respective ST. The new assay correctly identified all 142 representatives of the four major STs in the validation set (n= 515), with only two ST12 isolates misidentified as ST95. Compared with MLST, the assay has 100% sensitivity and 99.5% specificity. The rapid identification of major extraintestinalE. coliSTs will benefit future epidemiological studies and could be developed to tailor antibiotic therapy to the different susceptibilities of these dominant lineages.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Erik J. Boll ◽  
Søren Overballe-Petersen ◽  
Henrik Hasman ◽  
Louise Roer ◽  
Kim Ng ◽  
...  

ABSTRACT Escherichia coli sequence type 131 (ST131) is a major cause of urinary and bloodstream infections. Its association with extended-spectrum β-lactamases (ESBLs) significantly complicates treatment. Its best-described component is the rapidly expanding H30Rx clade, containing allele 30 of the type 1 fimbrial adhesin gene fimH. This lineage appears to have emerged in the United States and spread around the world in part due to the acquisition of the ESBL-encoding blaCTX-M-15 gene and resistance to fluoroquinolones. However, non-H30 ST131 sublineages with other acquired CTX-M-type resistance genes are also emerging. Based on whole-genome analyses, we describe here the presence of an (fimH) H27 E. coli ST131 sublineage that has recently caused an outbreak of community-acquired bacteremia and recurrent urinary tract infections (UTIs) in Denmark. This sublineage has acquired both a virulence plasmid (pAA) that defines the enteroaggregative E. coli (EAEC) diarrheagenic pathotype and multiple genes associated with extraintestinal E. coli (ExPEC); combined, these traits have made this particular ST131 sublineage successful at colonizing its human host and causing recurrent UTI. Moreover, using a historic World Health Organization (WHO) E. coli collection and publicly available genome sequences, we identified a global H27 EAEC ST131 sublineage that dates back as far as 1998. Most H27 EAEC ST131 isolates harbor pAA or pAA-like plasmids, and our analysis strongly implies a single ancestral acquisition among these isolates. These findings illustrate both the profound plasticity of this important pathogenic E. coli ST131 H27 sublineage and genetic acquisitions of EAEC-specific virulence traits that likely confer an enhanced ability to cause intestinal colonization. IMPORTANCE E. coli ST131 is an important extraintestinal pathogenic lineage. A signature characteristic of ST131 is its ability to asymptomatically colonize the gastrointestinal tract and then opportunistically cause extraintestinal infections, such as cystitis, pyelonephritis, and urosepsis. In this study, we identified an ST131 H27 sublineage that has acquired the enteroaggregative diarrheagenic phenotype, spread across multiple continents, and caused multiple outbreaks of community-acquired ESBL-associated bloodstream infections in Denmark. The strain’s ability to both cause diarrhea and innocuously colonize the human gastrointestinal tract may facilitate its dissemination and establishment in the community.


2012 ◽  
Vol 80 (8) ◽  
pp. 2791-2801 ◽  
Author(s):  
Felipe Del Canto ◽  
Douglas J. Botkin ◽  
Patricio Valenzuela ◽  
Vsevolod Popov ◽  
Fernando Ruiz-Perez ◽  
...  

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) is an important cause of diarrhea, mainly in developing countries. Although there are 25 different ETEC adhesins described in strains affecting humans, between 15% and 50% of the clinical isolates from different geographical regions are negative for these adhesins, suggesting that additional unidentified adhesion determinants might be present. Here, we report the discovery of Coli Surface Antigen 23 (CS23), a novel adhesin expressed by an ETEC serogroup O4 strain (ETEC 1766a), which was negative for the previously known ETEC adhesins, albeit it has the ability to adhere to Caco-2 cells. CS23 is encoded by an 8.8-kb locus which contains 9 open reading frames (ORFs), 7 of them sharing significant identity with genes required for assembly of K88-related fimbriae. This gene locus, namedaal(adhesion-associatedlocus), is required for the adhesion ability of ETEC 1766a and was able to confer this adhesive phenotype to a nonadherentE. coliHB101 strain. The CS23 major structural subunit, AalE, shares limited identity with known pilin proteins, and it is more closely related to the CS13 pilin protein CshE, carried by human ETEC strains. Our data indicate that CS23 is a new member of the diverse adhesin repertoire used by ETEC strains.


mBio ◽  
2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Matthew S. Walters ◽  
M. Chelsea Lane ◽  
Patrick D. Vigil ◽  
Sara N. Smith ◽  
Seth T. Walk ◽  
...  

ABSTRACTThe urinary tract is one of the most frequent sites of bacterial infection in humans. UropathogenicEscherichia coli(UPEC) strains are the leading cause of urinary tract infections (UTIs) and are responsible for greater than 80% of uncomplicated cases in adults. Infection of the urinary tract occurs in an ascending manner, with colonization of the bladder leading to possible kidney infection and bacteremia. The goal of this study was to examine the population dynamics of UPECin vivousing a murine model of ascending UTI. To track individual UPEC lineages within a host, we constructed 10 isogenic clones of UPEC strain CFT073 by inserting unique signature tag sequences between thepstSandglmSgenes at the attTn7 chromosomal site. Mice were transurethrally inoculated with a mixture containing equal numbers of unique clones. After 4 and 48 h, the tags present in the bladders, kidneys, and spleens of infected mice were enumerated using tag-specific primers and quantitative real-time PCR. The results indicated that kidney infection and bacteremia associated with UTI are most likely the result of multiple rounds of ascension and dissemination from motile UPEC subpopulations, with a distinct bottleneck existing between the kidney and bloodstream. The abundance of tagged lineages became more variable as infection progressed, especially after bacterial ascension to the upper urinary tract. Analysis of the population kinetics of UPEC during UTI revealed metapopulation dynamics, with lineages that constantly increased and decreased in abundance as they migrated from one organ to another.IMPORTANCEUrinary tract infections are some of the most common infections affecting humans, andEscherichia coliis the primary cause in most uncomplicated cases. These infections occur in an ascending manner, with bacteria traveling from the bladder to the kidneys and potentially the bloodstream. Little is known about the spatiotemporal population dynamics of uropathogenicE. coliwithin a host. Here we describe a novel approach for tracking lineages of isogenic taggedE. colistrains within a murine host by the use of quantitative real-time PCR. Understanding thein vivopopulation dynamics and the factors that shape the bacterial population may prove to be of significant value in the development of novel vaccines and drug therapies.


2014 ◽  
Vol 58 (4) ◽  
pp. 2126-2134 ◽  
Author(s):  
Benjamin A. Rogers ◽  
Paul R. Ingram ◽  
Naomi Runnegar ◽  
Matthew C. Pitman ◽  
Joshua T. Freeman ◽  
...  

ABSTRACTBy global standards, the prevalence of community-onset expanded-spectrum-cephalosporin-resistant (ESC-R)Escherichia coliremains low in Australia and New Zealand. Of concern, our countries are in a unique position, with high extramural resistance pressure from close population and trade links to Asia-Pacific neighbors with high ESC-RE. colirates. We aimed to characterize the risks and dynamics of community-onset ESC-RE. coliinfection in our low-prevalence region. A case-control methodology was used. Patients with ESC-RE. colior ESC-susceptibleE. coliisolated from blood or urine were recruited at six geographically dispersed tertiary care hospitals in Australia and New Zealand. Epidemiological data were prospectively collected, and bacteria were retained for analysis. In total, 182 patients (91 cases and 91 controls) were recruited. Multivariate logistic regression identified risk factors for ESC-R amongE. colistrains, including birth on the Indian subcontinent (odds ratio [OR] = 11.13, 95% confidence interval [95% CI] = 2.17 to 56.98,P= 0.003), urinary tract infection in the past year (per-infection OR = 1.430, 95% CI = 1.13 to 1.82,P= 0.003), travel to southeast Asia, China, the Indian subcontinent, Africa, and the Middle East (OR = 3.089, 95% CI = 1.29 to 7.38,P= 0.011), prior exposure to trimethoprim with or without sulfamethoxazole and with or without an expanded-spectrum cephalosporin (OR = 3.665, 95% CI = 1.30 to 10.35,P= 0.014), and health care exposure in the previous 6 months (OR = 3.16, 95% CI = 1.54 to 6.46,P= 0.02). Among our ESC-RE. colistrains, theblaCTX-MESBLs were dominant (83% of ESC-RE. colistrains), and the worldwide pandemic ST-131 clone was frequent (45% of ESC-RE. colistrains). In our low-prevalence setting, ESC-R among community-onsetE. colistrains may be associated with both “export” from health care facilities into the community and direct “import” into the community from high-prevalence regions.


Sign in / Sign up

Export Citation Format

Share Document