scholarly journals Iron overload is related to elevated blood glucose levels in obese children and aggravates high glucose-induced endothelial cell dysfunction in vitro

2020 ◽  
Vol 8 (1) ◽  
pp. e001426
Author(s):  
Wei Wu ◽  
Jinna Yuan ◽  
Yu Shen ◽  
Yunxian Yu ◽  
Xuefeng Chen ◽  
...  

IntroductionThis study was performed to investigate the role of iron overload in the early stage of hyperglycemia-induced vascular functional impairment.Research design and methodsA total of 196 obese children were enrolled, and data regarding ferritin levels, blood glucose levels, intima-media thickness of carotid arteries, liver function and fibrosis index, hemoglobin, blood pressure, blood lipids, and inflammation indicators were collected. Ferritin levels were compared with a control group, which consisted of 148 healthy non-obese children who were age-matched and gender-matched. Endothelial cells were cultured in high glucose medium and supplemented with ferric citrate with or without iron remover (deferoxamine), a reducing agent (N-acetyl-cysteine), or a nuclear factor-κB (NF-κB) inhibitor (BAY 11-7082). Apoptosis, oxidative stress, nitric oxide levels, and endothelin content were evaluated. DNA microarray analysis was performed to analyze the expression of genes in the NF-κB signaling pathway.ResultsObese children have significantly higher ferritin levels compared with the control group. Ferritin level was positively correlated with hemoglobin and was related to metabolic disorders, including impaired glucose tolerance, higher blood pressure, dyslipidemia, and impaired hepatic function. Endothelial cells treated with ferric citrate showed a significantly higher rate of apoptosis, higher levels of oxidative stress, and impaired vasomotor function under high glucose conditions. The above effects were rescued by treatment with an iron remover, reducing agent, or NF-κB inhibitor. Further, detection of phosphorylated-p65 distribution in cells confirmed activation of the NF-κB pathway. DNA microarrays and subsequent gene oncology enrichment analyses revealed the main processes activated in cells.ConclusionIncreased ferritin levels are related to impaired glucose tolerance and other metabolic disorders in obese children. At the cellular level, iron overload aggravated the endothelial cell dysfunction caused by high glucose.

Author(s):  
Ravi Kumar V ◽  
Sailaja Rao P

Objective: The present study was aimed to evaluate the antihyperglycemic activity and in vivo antioxidant effect of methanolic extract of whole plant of Psydrax dicoccos (MEPD) belonging to the family Rubiaceae.Methods: MEPD was prepared by Soxhlet extraction. Wistar rats weighing (180–200 g) were divided into six groups (n=6), with three doses of 100 mg/kg, 200 mg/kg, and 400 mg/kg of extract. Metformin was used as a standard drug. Diabetes was induced by streptozotocin (STZ) (40–50 mg/kg, i.p) in control group. The animals were treated with different doses of extracts for 21 days, and on the 22nd day, the blood glucose levels along with antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and lipid peroxidase (LPO) were determined.Results: The phytochemical screening of the extract showed the presence of carbohydrates, phenolics, flavonoids, glycosides, and tannins. The methanolic extract of MEPD at the dose of 200 mg/kg body weight showed a significant reduction in blood glucose levels (**p<0.001) with the value of 151.2 mg/dl on the 22nd day at 8 h. A promising antioxidant effect was also evident from the determination of antioxidant enzymes such as SOD, CAT, and LPO.Conclusion: The P. dicoccos extract revealed a potential effect of antihyperglycemic activity and combating nature on oxidative stress induced by STZ.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Meng-Fu Cheng ◽  
Li-Jen Chen ◽  
Juei-Tang Cheng

Theklothogene is expressed in a limited number of tissues, most notably in distal convoluted tubules in the kidney and choroid plexus in the brain. A previous study suggested that Klotho increases resistance to oxidative stress. However, changes of Klotho expression in high glucose-induced oxidative stress remain unclear. In the present study, we used streptozotocin-induced diabetic rats (STZ rats) to examine the effects of insulin, phloridzin or antioxidant, tiron on diabetic nephropathy. Both insulin and phloridzin reversed the lower Klotho expression levels in kidneys of STZ rats by the correction of hyperglycemia. Also, renal functions were improved by these treatments. In addition to the improvement of renal functions, the decrease of Klotho expression in kidney of STZ rats was also reversed by tiron without changing blood glucose levels. The reduction of oxidative stress induced by high glucose can be considered for this action of tiron. This view was further confirmed in vitro using high glucose-exposed Madin-Darby canine kidney (MDCK) epithelial cells. Thus, we suggest that decrease of oxidative stress is not only responsible for the improvement of renal function but also for the recovery of Klotho expression in kidney of STZ rats.


2020 ◽  
Vol 6 (3) ◽  
pp. 149
Author(s):  
Indi Kamilia Fitri ◽  
Cholis Abrori ◽  
Dion Krismashogi Dharmawan

In people with diabetes mellitus (DM) there is a decrease in basal vitamin C levels which is thought to be a result of oxidative stress in the condition of hyperglycemia that it needs to increase vitamin C as an antioxidant. Hyperglycemia in DM needs to be lowered by pharmacological therapy, named glimepirid so the purpose of this study is to determine the effectiveness of vitamin C addition to the reduction of KGD hyperglycemic mice with glimepirid treatment. This study is true experimental with a sample of 25 mice 20-30 grams and divided into five groups, first the control group (K0); STZ  induction group (K1); STZ induction group with glimepirid treatment (K2); STZ induction group with the treatment of vitamin C (K3); STZ induction group by treatment of a combination of glimepirid and vitamin C (K4). STZ is injected intraperitonially 150 mg / kgBB. All groups were measured for KGD 1 after induction of STZ and KGD 2 after treatment for fourteen days. The results of the STZ induction group with the treatment of a combination of glimepirid and vitamin C (K4) experienced a smaller and not significant decrease in BSL in the STZ induction group with a single glimepirid (K2) treatment. These results are thought to have an influence from interactions between drugs that cause one drug to not work optimally. The conclusion of this study is that administration of glimepirid, vitamin C, or both can reduce blood glucose levels in hyperglycemic mice with the greatest decrease occurring in the glimepirid group.


2020 ◽  
Vol 10 (1) ◽  
pp. 41-47
Author(s):  
Sitti Fatimah M. Arsad ◽  
Erna Rochmawati ◽  
Arianti Arianti

Abstract Diabetes mellitus is a chronic disease with metabolic disorders in the form of increased blood glucose levels caused by disruption of insulin secretion or insulin efficacy. Management of diabetes can be done by pharmacology or nonphamacology therapy. One of the nonpharmacological therapies is dhikr therapy. The study design used quasy experiment with the control group pre-post test design. The collected samples are 40 diabetes patients with simple random technique. The research sample was divided into 2 groups,control and intervention group, each of which was 20 respondents. Data analysis uses independent t-test. The results showed that dzikir therapy of sentences thayibah, asmaul husna and prayers performed every day for 2 weeks could significantly reduce patients blood glucose levels (p = 0.000) or p <0.05. Key Words : Dhikr Therapy, Blood Glucose Level, Type 2 Diabetes Melitus


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Weijian Bei ◽  
Yujiao Wang ◽  
Jianmei Chen ◽  
Jingjing Zhang ◽  
Lexun Wang ◽  
...  

Objective. To investigate the effect of FTZ on high-glucose-induced oxidative stress and underlying mechanisms. Methods. We used a β cell dysfunction and diabetes model that was induced in rats fed a high-fat high-sugar diet (HFHSD) for 6 weeks and injected once with 35 mg/kg streptozocin (STZ). Then, 3 and 6 g/kg of FTZ were administered by gavage for 8 weeks. In addition, an ex vivo model of oxidative stress was induced by stimulating INS-1 cells with 25 mmol/L glucose for 48 h. Result. The levels of fasting blood glucose (FBG) in diabetic model rats were obviously higher than those in the normal group; furthermore with reduced levels of β cells, catalase (CAT), superoxide dismutase (SOD), and Bcl-2 increased lipid peroxide malondialdehyde (MDA) and caspase-3 in the pancreatic tissue of the diabetic model rats. Afterward, the cells were incubated with FTZ-containing serum and edaravone. The 25 mmol/L glucose-induced SOD reduction increased MDA and intracellular ROS. The protein expression level of Mn-SOD and CAT in the model group decreased significantly compared with that in the control group. Conclusion. FTZ treatment significantly improved the alteration in the level of SOD, CAT, Bcl-2, caspase-3, and MDA coupled with β cell dysfunction in diabetic rats. Oxidative stress in INS-1 cells was closely associated with a higher rate of apoptosis, increased production of ROS and MDA, enhanced Bax expression, and caspase-3, -9 activities and markedly decreased protein expression of Mn-SOD and CAT. FTZ-containing serum incubation notably reversed the high-glucose-evoked increase in cell apoptosis, production of ROS and MDA, and Bax protein levels. Furthermore, FTZ stimulation upregulated the expression levels of several genes, including Mn-SOD, CAT, and Bcl-2/Bcl-xl. In addition, FTZ decreased the intracellular activity of caspase-3, -9 in INS-1 cells. FTZ protected β-cells from oxidative stress induced by high glucose in vivo and in vitro. The beneficial effect of FTZ was closely associated with a decrease in the activity of caspase-3, -9 and intracellular production of ROS, MDA, and Bax coupled with an increase in the expression of Mn-SOD, CAT, and Bcl-2/Bcl-xl.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
S. A. Sheweita ◽  
S. Mashaly ◽  
A. A. Newairy ◽  
H. M. Abdou ◽  
S. M. Eweda

Alhagi maurorum(camel thorn plant) is a promising medicinal plant due to the presence of flavonoids and phenolic compounds as major contents of its constituents. No previous study has been conducted before onA. maurorum extractsas an antioxidative stress and/or antidiabetic herb in STZ-induced DM in rats. Therefore, four groups of rats were allocated as control (C), STZ-induced DM (D), and STZ-induced DM supplemented with 300 mg/kg BW of either aqueous extract (WE) or ethanolic extract (EE) ofA. maurorum. The plasma levels of glucose, TG, TC, LDL-C and VLDL-C, MDA, and bilirubin and the activities of transaminases and GR were significantly increased in the diabetic group. Also, diabetic rats showed severe glucose intolerance and histopathological changes in their livers. In addition, levels of insulin, total proteins, GSH, and HDL-C and the activities of SOD, GPx, and GST were significantly decreased in the diabetic rats compared to those of the control group. The ingestion ofA. maurorumextracts lowered the blood glucose levels during the OGTT compared to the diabetic rats and restored all tested parameters to their normal levels with the exception of insulin level that could not be restored. It is concluded thatA. maurorumextracts decreased elevated blood glucose levels and hyperlipidemia and suppressed oxidative stress caused by diabetes mellitus in rats.


2018 ◽  
Vol 8 (2) ◽  
pp. 144
Author(s):  
Ria Afrianti

This study aims to determine the effect giving of ethylacetate fraction of leather  purple sweet potato (Ipomoea batatas (L.) Lam, on levels of malondialdehyde (MDA) serum in mice hyperglicemia were induced with streptozocin dose of 50 mg/kgBW. Mice were divided into 5 groups, each group consisting of 3 tails, group I is a negative control, group II is a positive control, group III,IV and V is given ethylacetate fraction a dose of 100 mg/kgBW, 300 mg/kgBW, and 600 mg/kgBW. Ethyl Acetate Fraction leather purple sweet potato given orally for 15 days after the animal is declared hyperglicemia and measurement of blood glucose levels on 5, 10, and 15 day after giving test preparation in animal experiments. On the 16 day throughout the mice were taken serum levels measured malondialdehid. The statistical analysis results showed that giving of ethyl acetate fraction of leather purple sweet potato at a dose of 100 mg/kgBW, 300 mg/kgBW, and 600 mg/kgBW can lower blood glucose levels in mice hyperglycemia significantly (p<0.05). Malondialdehid levels on average in each group is 1.35 nmol/ml, 3.00 nmol/ml, 2.72 nmol/ml, 2.20 nmol/ml and 2.61 nmol/ml, the results of statistical analysis showed a decrease in melondialdehid serum levels were significantly (p<0.05), where a dose of 300 mg/kgBW is an effective dose for lowering blood glucose levels followed by decreased levels of malondialdehid which give effect approaching negative control.


2018 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Verawaty Verawaty ◽  
Dhea Claudia Novel

<p>Penelitian ini bertujuan untuk melihat pengaruh pemberian ekstrak etanol kulit petai (Parkia speciosa Hassk) terhadap penurunan kadar glukosa darah mencit jantan yang diinduksi aloksan. Hewan percobaan dibagi atas 5 kelompok diantaranya kelompok kontrol negatif, kelompok kontrol positif,dosis I (280 mg/kgBB mencit), dosis II (560 mg/kg BB mencit), dosis III (840 mg/kg BB mencit). Penelitian dilakukan selama 21 hari. Persentase penurunan kadar glukosa darah mencit jantan setelah diberikan ekstrak etanol kulit petai pada hari ke-21 adalah dosis I (77,52 %) lebih besar dibandingkan dengan dosis II (69,5 %) dan dosis III (73,37 %). Data yang diperoleh dianalisis dengan uji Two Way Anova dengan program SPSS 17. Hasil penelitian ini menunjukkan bahwa pemberian ekstrak etanol kulit petai untuk tiga variasi dosis menyatakan perbedaan yang bermakna secara statistik terhadap penurunan kadar glukosa darah mencit jantan.</p><p><em>Petai (Parkia speciosa Hassk) has a compound β-sitosterol and stigmasterol that have efficacy to decreased blood glucose levels. This study aimed to determine the effect of ethanol extract of petai peel for decrease blood glucose levels of male mice induced by alloxan. Experimental animals were divided into 5 groups including negative control group, positive control group, the first dose (280 mg/kg in mice), the second dose (560 mg/kg in mice), the third dose (840 mg/kg in mice). The study was conducted for 21 days. After 21 days, the result found that the percentage of blood glucose levels after the male mice given the ethanol extract of petai peel was, the first dose (77.52%) biger than the second dose (69.5%) and the third dose (73.37%). The data obtained were analyzed by Two Way ANOVA using SPSS 17. The results showed that have signicantly difference between three dose variation of ethanol extract of petai peel in blood glucose levels.</em></p>


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Yun ◽  
Jinyu Ren ◽  
Yufei Liu ◽  
Lijuan Dai ◽  
Liqun Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. Methods RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. Results Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. Conclusion All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 335
Author(s):  
Estefanía Bravo-Sánchez ◽  
Donovan Peña-Montes ◽  
Sarai Sánchez-Duarte ◽  
Alfredo Saavedra-Molina ◽  
Elizabeth Sánchez-Duarte ◽  
...  

Diabetes mellitus (DM) constitutes one of the public health problems today. It is characterized by hyperglycemia through a defect in the β-cells function and/or decreased insulin sensitivity. Apocynin has been tasted acting directly as an NADPH oxidase inhibitor and reactive oxygen species (ROS) scavenger, exhibiting beneficial effects against diabetic complications. Hence, the present study’s goal was to dissect the possible mechanisms by which apocynin could mediate its cardioprotective effect against DM-induced oxidative stress. Male Wistar rats were assigned into 4 groups: Control (C), control + apocynin (C+A), diabetes (D), diabetes + apocynin (D+A). DM was induced with streptozotocin. Apocynin treatment (3 mg/kg/day) was applied for 5 weeks. Treatment significantly decreased blood glucose levels and insulin resistance in diabetic rats. In cardiac tissue, ROS levels were higher, and catalase enzyme activity was reduced in the D group compared to the C group; the apocynin treatment significantly attenuated these responses. In heart mitochondria, Complexes I and II of the electron transport chain (ETC) were significantly enhanced in the D+A group. Total glutathione, the level of reduced glutathione (GSH) and the GSH/ oxidized glutathione (GSSG) ratio were increased in the D+A group. Superoxide dismutase (SOD) and the glutathione peroxidase (GSH-Px) activities were without change. Apocynin enhances glucose uptake and insulin sensitivity, preserving the antioxidant defense and mitochondrial function.


Sign in / Sign up

Export Citation Format

Share Document