TRIBOLOGICAL BEHAVIOR OF THIN NANO TUNGSTEN CARBIDE FILM DEPOSITED ON 316L STAINLESS STEEL SURFACE

2018 ◽  
Vol 25 (08) ◽  
pp. 1950027 ◽  
Author(s):  
M. SARAVANAN ◽  
N. VENKATESHWARAN ◽  
A. DEVARAJU ◽  
A. KRISHNAKUMARI

This study presents the tribological behavior of austenitic 316L Stainless Steel (SS) coated with nano Tungsten Carbide (WC). The nano WC particles were prepared by mechano chemical method. The tungsten and toluene have been ball milled for 40[Formula: see text]h led to the synthesis of WC nano particles. An average particles size of 48[Formula: see text]nm was achieved. The prepared nano WC particles were deposited on 316L SS substrate as a thin film using DC magnetron sputtering process. The thickness of the nano WC coating was 5[Formula: see text][Formula: see text]m. The synthesized nano WC particles and the thin nano WC film are characterized using Scanning Electron Microscope (SEM), X-ray Diffraction (XRD) and Energy Dispersive X-ray Analysis (EDAX) technique. Vickers microhardness test was conducted to evaluate the microhardness of the thin film. A high microhardness value of 2242 HV[Formula: see text] was observed. The coated specimens are subjected to wear test using pin on disc setup and the tribological parameters such as friction and wear are analyzed. The results were compared with uncoated 316L SS specimen and micro WC particles coated 316L SS. The nano WC coated 316L SS possess high hardness and better wear resistance when compared with 316L SS and micro WC coated 316L SS specimen.

2011 ◽  
Vol 239-242 ◽  
pp. 3354-3357
Author(s):  
Yu Jiang Wang ◽  
Xin Xin Ma ◽  
Qing Fu Chen ◽  
Guang Ze Tang

We have studied the anodization behavior of an Al film electrodeposited on the 316L stainless steel (316L SS) substrate and demonstrated an effective approach to fabricate the micro-cavities on the conducting substrate through anodic aluminum oxide (AAO) template. The morphologies and composition of the electroplating aluminum layers and the micro-cavities were evaluated by SEM and energy dispersive X-ray analysis (EDXA) respectively. The results indicated that different shapes of cavities with size ranging from 0.6 to 2 mm were come into being directly on 316L SS substrates. The size of cavities could be controlled by adjusting the anodizing voltage and time. And the morphologies of the initial aluminum films were found to be critical factors for successfully anodizing the Al film on 316L SS surface.


Author(s):  
Arkadeb Mukhopadhyay ◽  
Tapan Kumar Barman ◽  
Prasanta Sahoo

Sodium borohydride reduced electroless Ni–B coatings possess high hardness, wear resistance, and low coefficient of friction. They are found to be suitable candidates for wear reduction of mechanical components. In a quest to achieve enhanced tribological behavior and high thermal stability, the present work reports the inclusion of W to Ni–B coatings. Electroless method is employed for Ni–B–W coating deposition on AISI 1040 steel specimens. Post deposition, the coatings are heat treated at 350 ℃, 400 ℃, and 450 ℃. Deposit characterization is carried out using energy-dispersive X-ray analysis, X-ray diffraction, and scanning electron microscopy. Inclusion of W leads to an increase in microhardness and thermal stability of Ni–B coatings. The tribological behavior of as-deposited and heat-treated Ni–B–W coatings are investigated at room and elevated temperatures (100 ℃, 300 ℃, and 500 ℃). Heat-treated coatings show lower wear rate at room temperature compared to as-deposited ones but the coefficient of friction increases. Tribological test results at elevated temperatures suggest an improvement in the wear resistance and coefficient of friction at 300 ℃ and 500 ℃ in comparison with 100 ℃. Phase transformation study post wear test indicate microstructural changes in the coating due to the in situ heat treatment at high temperature. The tribological behavior of the coatings at 100 ℃ and 300 ℃ is mainly governed by the loose wear debris and formation of debris patches, respectively. Whereas at 500 ℃, formation of protective tribo-oxide patches is also observed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1055
Author(s):  
Gonzalez A. S. ◽  
Riego Á. ◽  
Vega V. ◽  
García J. ◽  
Galié S. ◽  
...  

In our study, we demonstrated the performance of antimicrobial coatings on properly functionalized and nanostructured 316L food-grade stainless steel pipelines. For the fabrication of these functional coatings, we employed facile and low-cost electrochemical techniques and surface modification processes. The development of a nanoporous structure on the 316L stainless steel surface was performed by following an electropolishing process in an electrolytic bath, at a constant anodic voltage of 40 V for 10 min, while the temperature was maintained between 0 and 10 °C. Subsequently, we incorporated on this nanostructure additional coatings with antimicrobial and bactericide properties, such as Ag nanoparticles, Ag films, or TiO2 thin layers. These functional coatings were grown on the nanostructured substrate by following electroless process, electrochemical deposition, and atomic layer deposition (ALD) techniques. Then, we analyzed the antimicrobial efficiency of these functionalized materials against different biofilms types (Candida parapsilosis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis). The results of the present study demonstrate that the nanostructuring and surface functionalization processes constitute a promising route to fabricate novel functional materials exhibiting highly efficient antimicrobial features. In fact, we have shown that our use of an appropriated association of TiO2 layer and Ag nanoparticle coatings over the nanostructured 316L stainless steel exhibited an excellent antimicrobial behavior for all biofilms examined.


2020 ◽  
Vol 56 (4) ◽  
pp. 3444-3454
Author(s):  
Felix Weber ◽  
Markus Rettenmayr

Abstract Active brazing is a commonly used method for joining dissimilar materials with at least one non-metallic component. In the present study, joining of SiO2 glass to 316L stainless steel was performed utilizing Bi–Ag-based solders. Ti up to a concentration of 4 and Mg up to 1 wt.% were added as active elements. Microstructures of the solder alloys in the as-cast state and of cross sections of the joined compounds were analysed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. In the as-cast state of the solder, Ti is found in Bi–Ti intermetallic phases; Mg is partially dissolved in the fcc-(Ag) phase and additionally contained in a ternary Ag-Bi-Mg phase. After soldering, a tight joint was generated using several alloy compositions. Ti leads to the formation of reaction products at the steel/solder and glass/solder interfaces, and Mg is exclusively accumulated at the glass/solder interface.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1473 ◽  
Author(s):  
Kwangjae Park ◽  
Dasom Kim ◽  
Kyungju Kim ◽  
Seungchan Cho ◽  
Kenta Takagi ◽  
...  

Aluminum (Al)-stainless steel 316L (SUS316L) composites were successfully fabricated by the spark plasma sintering process (SPS) using pure Al and SUS316L powders as raw materials. The Al-SUS316L composite powder comprising Al with 50 vol.% of SUS316L was prepared by a ball milling process. Subsequently, it was sintered at 630 °C at a pressure of 200 MPa and held for 5 min in a semisolid state. The X-ray diffraction (XRD) patterns show that intermetallic compounds such as Al13Fe4 and AlFe3 were created in the Al-SUS316L composite because the Al and SUS316L particles reacted together during the SPS process. The presence of these intermetallic compounds was also confirmed by using XRD, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and EDS mapping. The mechanical hardness of the Al-SUS316L composites was analyzed by a Vickers hardness tester. Surprisingly, the Al-SU316L composite exhibited a Vickers hardness of about 620 HV. It can be concluded that the Al-SUS316L composites fabricated by the SPS process are lightweight and high-hardness materials that could be applied in the engineering industry such as in automobiles, aerospace, and shipbuilding.


2020 ◽  
pp. 2467-2478
Author(s):  
Amaal S. Sadiq ◽  
Entesar O. Al-Tamimi

A series of polymers containing1,2,4-triazole  and tetrazole groups in their main chains were synthesized through several steps. Poly(acryloyl hydrazide) was first prepared and then subjected to a hydrazide reaction with phenyl isothiocyanate to give a 1,2,4-triazole ring (2). This polymer was introduced into a reaction with chloro acetylchloride to yield polymer (3), which was refluxed with sodium azide to give polymer (4). Polymer (5) was synthesized by the reaction of polymer (4) with  acrylonitrile in the presence of NH4Cl as a catalyst. Finally, polymer (6) was synthesized by the electrochemical polymerization of polymer (5) using  316L stainless steel as an anti-corrosion coating. Polymer-coated and uncoated stainless steel was tested for corrosion safety in a solution of 0.1 M HCl, followed by Tafel and Potentiostatic procedures at a temperature of 293 K. Nano materials such as ZnO were applied to the monomer solution at different concentrations to enhance the corrosion resistance of the 316L stainless steel surface. The results showed that the performance values of corrosion protection for the polymer coating were increased with the introduction of the nano materials. Furthermore, 13C-NMR, 1H-NMR, and FTIR were recorded to confirm the structures of the poylmers, while their physical properties were tested using atomic force microscope (AFM) and scanning electron microscope (SEM).


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 183 ◽  
Author(s):  
Meiling Xu ◽  
Shumei Kang ◽  
Jinlin Lu ◽  
Xinyong Yan ◽  
Tingting Chen ◽  
...  

PEMFC are considered to be the most promising for automotive energy because of their good working effect, low temperature, high efficiency, and zero pollution. Stainless steel as a PEMFC bipolar plate has unparalleled advantages in strength, cost, and processability, but it is easy to corrode in a PEMFC working environment. In order to improve the corrosion resistance, the surface modification of 316L stainless steel is a feasible solution for PEMFC bipolar plates. In the present study, the plasma-nitrided coating and CrNx coating were prepared by the plasma-enhanced balanced magnetron sputtering technology on the 316L stainless steel surface. The microstructures, phase compositions, and corrosion resistance behavior of the coatings were investigated. The corrosion behavior of the prepared plasma-nitrided coating and CrNx coating was investigated by potentiodynamic polarization, potentiostatic polarization, and electrochemical impedance spectroscopy (EIS) in both cathodic and anodic environments. The experimental results show that corrosion resistance of the CrNx coating was better than the plasma-nitrided coating. It was indicated that the technology process of nitriding first and then depositing Cr was better than nitriding only.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 636 ◽  
Author(s):  
Xu ◽  
Wang ◽  
Chen ◽  
Qiao ◽  
Zhang ◽  
...  

The effect of rare earth oxides on the microstructure and corrosion behavior of laser-cladding coating on 316L stainless steel was investigated using hardness measurements, a polarization curve, electrochemical impedance spectroscopy (EIS), a salt spray test, X-ray diffraction, optical microscopy, and scanning electron microscopy (SEM). The results showed that the modification of rare earth oxides on the laser-cladding layer caused minor changes to its composition but refined the grains, leading to an increase in hardness. Electrochemical and salt spray studies indicated that the corrosion resistance of the 316L stainless steel could be improved by laser cladding, especially when rare earth oxides (i.e., CeO2 and La2O3) were added as a modifier.


Sign in / Sign up

Export Citation Format

Share Document