Exposure to hydrogen peroxide diminishes NF-κB activation, IκB-α degradation, and proteasome activity in neutrophils

2007 ◽  
Vol 293 (1) ◽  
pp. C255-C266 ◽  
Author(s):  
Jaroslaw W. Zmijewski ◽  
Xia Zhao ◽  
Zhiwei Xu ◽  
Edward Abraham

Although ROS can participate in modulating the activity of the transcriptional factor NF-κB and expression of NF-κB-dependent genes, the mechanisms involved and the roles of specific ROS have not been fully determined. In particular, individual ROS appear to have differing effects on NF-κB activation dependent on the cell population studied. In the present study, we examined the ability of H2O2 to affect NF-κB activation in LPS-stimulated murine neutrophils and macrophages. Exposure of bone marrow or peritoneal neutrophils to H2O2 was associated with reduced nuclear translocation of NF-κB and decreased production of the NF-κB-dependent cytokines TNF-α and macrophage inhibitory protein-2. H2O2 treatment resulted in diminished trypsin- and chymotrypsin-like proteasome activity. The degradation of IκB-α normally found in LPS-treated neutrophils was prevented when H2O2 was added to cell cultures. In contrast to the effects found in neutrophils, H2O2 did not affect chymotrypsin-like proteasomal activity or cytokine production in LPS-stimulated macrophages, even though trypsin-like proteasomal activity was reduced. These results demonstrate that the effects of H2O2 on NF-κB and proteasomal activity are cell population specific.

Author(s):  
Feifei Li ◽  
Ran Yan ◽  
Jun Wu ◽  
Zeren Han ◽  
Meng Qin ◽  
...  

Sepsis is a systemic inflammatory response syndrome caused by infections that may lead to organ dysfunction with high mortality. With the rapid increase in the aging population and antimicrobial resistance, developing therapeutics for the treatment of sepsis has been an unmet medical need. Excessive production of reactive oxygen species (ROS) during inflammation is associated with the occurrence of sepsis. We report herein a treatment for sepsis based on PEGylated catalase, which can effectively break down hydrogen peroxide, a key component of ROS that is chemically stable and able to diffuse around the tissues and form downstream ROS. PEGylated catalase can effectively regulate the cytokine production by activated leukocytes, suppress the elevated level of AST, ALT, TNF-α, and IL-6 in mice with induced sepsis, and significantly improve the survival rate.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8294 ◽  
Author(s):  
Adila Aipire ◽  
Mahepali Mahabati ◽  
Shanshan Cai ◽  
Xianxian Wei ◽  
Pengfei Yuan ◽  
...  

Background The enhancement of immunity is very important for immunocompromised patients such as cancer patients with radiotherapy or chemotherapy. Glycyrrhiza uralensis has been used as food and medicine for a long history. G. uralensis polysaccharides (GUPS) were prepared and its immunostimulatory effects were investigated. Methods Human monocyte-derived dendritic cells (DCs) and murine bone marrow-derived DCs were treated with different concentrations of GUPS. The DCs maturation and cytokine production were analyzed by flow cytometry and ELISA, respectively. Inhibitors and Western blot were used to study the mechanism of GUPS. The immunostimulatory effects of GUPS were further evaluated by naïve mouse model and immunosuppressive mouse model induced by cyclophosphamide. Results GUPS significantly promoted the maturation and cytokine secretion of human monocyte-derived DCs and murine bone marrow-derived DCs through TLR4 and down-stream p38, JNK and NF-κB signaling pathways. Interestingly, the migration of GUPS treated-DCs to lymph node was increased. In the mouse model, GUPS increased IL-12 production in sera but not for TNF-α. Moreover, GUPS ameliorated the side effect of cyclophosphamide and improved the immunity of immunosuppressive mice induced by cyclophosphamide. These results suggested that GUPS might be used for cancer therapy to ameliorate the side effect of chemotherapy and enhance the immunity.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 457-457
Author(s):  
Tamisha Y. Vaughan-Whitley ◽  
Hikaru Nishio ◽  
Barry Imhoff ◽  
Zhengqi Wang ◽  
Silvia T. Bunting ◽  
...  

Abstract Macrophages are responsible for protecting the body against foreign invaders. We have been studying the role of Grb2-associated binding proteins (Gabs) in macrophage biology. In mice, Gabs are adaptor proteins that include three family members (Gab1, Gab2, and Gab3) that play critical regulatory roles in modulating cytokine receptor signaling. Gab2 knockout mice have no developmental defects but have impaired allergic responses, osteoclast defects, altered mast cell development, and altered hematopoiesis. Gab3 knockout mice have no defined phenotypes alone and although highly expressed in macrophages, a functional role was not found despite considerable focus on this cell type. Therefore, we set out to determine the combined role of Gab2 and Gab3 to determine whether they performed redundant functions not observable in single knockout mice. To analyze regulation of macrophage cytokine production, a Gab2/3 deficient mouse model was generated on the C57BL/6 background. Bone Marrow Derived Macrophages (BMDM) were expanded from the bone marrow (BM) of wild-type (WT), Gab2 and Gab3 single knockout and Gab2/3 knockout mice and found to similarly co-express CD11b and F4/80. However, Gab2/3 knockout BM produced only 30% of wild-type BMDM numbers. Despite reductions in BMDM absolute numbers, isolated BMDM demonstrated significant induction of pro-inflammatory cytokines TNF-α and IL-12 and anti-inflammatory cytokine IL-10 mRNA at baseline. Interestingly, after LPS stimulation (100ng/ml) we detected much greater induction of TNF-α and IL-12 mRNA and protein expression. Interestingly, despite increased IL-10 mRNA induction in Gab2/3 knockout BMDM, no IL-10 protein expression could be detected by Luminex assay. No changes were observed in production of interferon or STAT1 activation in these BMDM. Studies have shown that rapamycin treatment of macrophages suppresses mTORC1 and subsequently reduces IL-10 production and promotes pro-inflammatory cytokine production. Gab2 is known for its role in regulating the PI3K pathway through interactions with the p85 regulatory subunit of PI3K. Therefore, we also examined whether mTOR activation was effected by Gab2/3 deficiency causing altered cytokine expression. Deletion of Gab2/3 in BMDMs treated with LPS showed an inhibition of 4EBP1 phosphorylation and increased AKT phosphorylation. These results suggest that Gabs may play a critical role in modulating mTOR activation and potentially causing defects in protein translation that reflect in reduced IL-10 cytokine levels in Gab2/3 knockout cells. IL-10 has a critical immunoregulatory role that is dysregulated in patients with inflammatory bowel disease. IL-10 deficient mice develop colitis due to loss of mucosal immune tolerance. Strikingly, as early as two months of age in vivo 12/32 (37.5%) Gab2/3 knockout mice developed rectal prolapse and suffered from diarrhea within a six month period. Histological analysis of isolated colons using a scoring system confirmed spontaneous development of colitis in Gab2/3 knockout mice compared to no phenotypes observed in WT and single knockout controls. To determine whether the BM was directly involved in the disease, BM chimeras were generated using irradiated WT mice as recipients and Gab2/3 knockout mice as donors. Susceptible recipients receiving Gab2/3 knockout BM showed a more invasive colitis phenotype than the spontaneous disease and resulted in forced euthanization due to body weight decreases greater than 25%. Multiple ulcerations were present in most of the colon proximal region, with extensive epithelial damage, transmural inflammation, and in some mice adenocarcinoma. Notably, we did not observe adenocarcinoma in untransplanted Gab2/3 knockout mice, suggesting that epithelial deletion of Gab2/3 may suppress cancer whereas in the bone marrow chimera model, the epithelial cells are WT and can be transformed. Similar phenotypes were also observed in secondary transplant recipients. Lastly, treatment of Gab2/3 knockout mice with dextran-sodium-sulfate (DSS) induced rapid severe colitis that resulted in death of 80% and 40% of Gab2/3 knockout and WT mice respectively. Overall, these observations demonstrate a major redundant role for Gab2 and Gab3 in macrophage immune surveillance required for the prevention of colitis in mice. Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 294 (4) ◽  
pp. C985-C993 ◽  
Author(s):  
Emmanuel Lorne ◽  
Jaroslaw W. Zmijewski ◽  
Xia Zhao ◽  
Gang Liu ◽  
Yuko Tsuruta ◽  
...  

Reactive oxygen species (ROS) contribute to neutrophil activation and the development of acute inflammatory processes in which neutrophils play a central role. However, there is only limited information concerning the mechanisms through which extracellular ROS, and particularly cell membrane-impermeable species, such as superoxide, enhance the proinflammatory properties of neutrophils. To address this issue, neutrophils were exposed to superoxide generating combinations of xanthine oxidase and hypoxanthine or lumazine. Extracellular superoxide generation induced nuclear translocation of nuclear factor-κB (NF-κB) and increased neutrophil production of the NF-κB-dependent cytokines tumor necrosis factor-α (TNF-α) and macrophage inhibitory protein-2 (MIP-2). In contrast, there were no changes in TNF-α or MIP-2 expression when neutrophils lacking Toll-like receptor-4 (TLR4) were exposed to extracellular superoxide. Immunoprecipitation, confocal microscopy, and fluorescence resonance energy transfer (FRET) studies demonstrated association between TLR4 and xanthine oxidase. Exposure of neutrophils to heparin attenuated binding of xanthine oxidase to the cell surface as well as interactions with TLR4. Heparin also decreased xanthine oxidase-induced nuclear translocation of NF-κB as well as production of proinflammatory cytokines. These results demonstrate that extracellular superoxide has proinflammatory effects on neutrophils, predominantly acting through an TLR4-dependent mechanism that enhances nuclear translocation of NF-κB and increases expression of NF-κB-dependent cytokines.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4444
Author(s):  
Thao Quyen Cao ◽  
Nguyen Viet Phong ◽  
Jang Hoon Kim ◽  
Dan Gao ◽  
Hoang Le Tuan Anh ◽  
...  

The bitter melon, Momordica charantia L., was once an important food and medicinal herb. Various studies have focused on the potential treatment of stomach disease with M. charantia and on its anti-diabetic properties. However, very little is known about the specific compounds responsible for its anti-inflammatory activities. In addition, the in vitro inhibitory effect of M. charantia on pro-inflammatory cytokine production by lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells (BMDCs) has not been reported. Phytochemical investigation of M. charantia fruit led to the isolation of 15 compounds (1−15). Their chemical structures were elucidated spectroscopically (one- and two-dimensional nuclear magnetic resonance) and with electrospray ionization mass spectrometry. The anti-inflammatory effects of the isolated compounds were evaluated by measuring the production of the pro-inflammatory cytokines interleukin IL-6, IL-12 p40, and tumor necrosis factor α (TNF-α) in LPS-stimulated BMDCs. The cucurbitanes were potent inhibitors of the cytokines TNF-α, IL-6, and IL-12 p40, indicating promising anti-inflammatory effects. Based on these studies and in silico simulations, we determined that the ligand likely docked in the receptors. These results suggest that cucurbitanes from M. charantia are potential candidates for treating inflammatory diseases.


2004 ◽  
Vol 286 (3) ◽  
pp. C683-C692 ◽  
Author(s):  
Derek Strassheim ◽  
Karim Asehnoune ◽  
Jong-Sung Park ◽  
Jae-Yeol Kim ◽  
Qianbin He ◽  
...  

Reactive oxygen species (ROS), including hydrogen peroxide (H2O2), are generated in increased amounts in pathological, biological processes and can play a role in signal transduction. Neutrophils often accumulate in acute inflammatory reactions, at sites where elevated concentrations of ROS are present. ROS have been demonstrated to participate in the activation of intracellular signaling pathways, including those involved in modulating nuclear accumulation and transcriptional activity of NF-κB. However, the role of ROS in affecting such events in neutrophils has not been examined. Using exposure of murine bone marrow neutrophils to H2O2 as a model of oxidative stress, we found both strong and persistent activation of ERK1/2, p38, JNK, and PKB, but not the p21-activated kinase. Stimulating the bone marrow-derived neutrophils with H2O2 did not affect nuclear translocation of NF-κB. However, production and secretion of the proinflammatory cytokine TNF-α in LPS-stimulated neutrophils were inhibited by H2O2. Exposure of LPS- or TNF-α-stimulated neutrophils to H2O2 decreased nuclear translocation of NF-κB. LPS-induced activation of the transcriptional factor AP-1 was also inhibited by H2O2. This inhibition of nuclear accumulation of NF-κB by H2O2 was not caused by an impaired capacity of LPS to stimulate the IKK pathway or to direct oxidative effects on NF-κB but rather reflected diminished degradation of IκB-α. These results indicate that oxidative stress, despite being able to selectively activate intracellular kinases in bone marrow-derived neutrophils, also inhibits NF-κB activation and associated TNF-α expression. Such inhibitory effects on neutrophil activation may limit tissue damage produced by oxidative stress.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3082-3082
Author(s):  
Kenichi Sawada ◽  
Makoto Hirokawa ◽  
Kayo Inaba ◽  
Hiroshi Fukaya ◽  
Yoshinari Kawabata ◽  
...  

Abstract Background. Tumor necrosis factor-α (TNF-α) and thrombopoietin (TPO) have been shown to sustain differentiation and proliferation of CD34+ cells toward dendritic cells (DCs) in the presence of multi-acting cytokines. We hypothesized that co-stimulation of TPO and TNF-α generate megakaryocytic progenitors and DCs together from human CD34+ cells and that interaction of these cells may provide a physiological and/or a pathological role of DCs in megakaryopoiesis. Materials and Methods. Highly purified human CD34+ cells were cultured with TPO, with or without TNF-α, in plasma-depleted medium and induced to undergo megakaryocytic differentiation. We enumerated megakaryocytic progenitor cells using the specific markers CD41, CD42b, and CD61, and DCs using CD4, CD11c, CD80, CD83, CD86, and CD123. The character and roles of co-developing non-megakaryocytic cells in the presence of TNF-α were analyzed by fluorescence-activated cell sorter, enzyme immunohistochemistry, confocal microscopy, and autologous mixed lymphocyte reaction. Cytokine production was assessed using a cytometric bead array system. Results. When CD34+ cells were cultured for 7 days in the presence of TPO, the generated cells predominantly expressed CD41 (95±2%), CD42b (54±12%), and CD61 (96±2%), while rarely expressing CD11c (1.6±1.3%), CD80 (0.1±0.1%), CD83 (0.8±0.6%), or CD86 (3.3±1.9%). The addition of TNF-α significantly decreased the number of cells expressing CD41 (3.0±0.6%), CD42b (3.3±1.0%), or CD61 (3.2±0.9%), but did not affect the number of total cells. In the presence of TNF-α, the generated cells expressed major histocompatibility complex (MHC) class I (100%) plus MHC class II (100%). A substantial number of cells became positive for CD11c (37±1%), and even co-stimulatory molecules such as CD80 (2.4±1.9%), CD83 (8±4%), and CD86 (18±7%). Immature CD11c+ DCs were physically associated with apoptotic and CD61+ cells and capable of endocytosing CD61+ cells. Most of the CD11c+ cells co-expressed the c-mpl TPO receptor, CD4, and CD123 and about one half of CD11c+ cells co-expressed CD86. The DCs generated by TNF-α and TPO, but not those by TNF-α alone, facilitated autologous T cell proliferation in some extent, although cytokine production from activated T cells were low. We also confirmed engulfment of CD61+ cells and their fragment by CD11c+ cells in bone marrow cells from patients with hemophagocytic syndromes. Conclusions. This is the first report showing that in the presence of TNF-α, the non-megakaryocytic cells with typical feature of DCs are co-generated from human CD34+ cells during megakaryocytic differentiation by TPO. The CD4+ CD11c+ CD123+ DCs physically associates with and phagocytose developing or dying immature megakaryocytic cells. Similar phenomenon showing engulfment of CD61+ fragment by CD11c+ cells was also observed in bone marrow cells from patients with hemophagocytic syndrome. Therefore, it may be conceivable that DCs with phagocytic activity during the development in bone marrow may play a crucial role in the maintenance of tolerance for self-substances derived from hematopoietic progenitor cells.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Brenda B Su ◽  
Zhuo Sun ◽  
Hiroko Fujii ◽  
Jun Wu ◽  
Zhihong Li ◽  
...  

Background: Inhibition of toll-like receptors (TLRs) may be a new treatment to prevent congestive heart failure during post-myocardial infarction (MI) surgical interventions. TLR2 knockout (KO) mice provide an opportunity to predict the effects of inhibitors and to establish the mechanisms responsible for their beneficial effects. This study was performed to establish the pathways responsible for myocardial protection in the absence of TLRs after MI. Methods and Results: In vivo study: MI was induced in TLR2 KO and wild-type (WT) C56B/6J mice by anterior coronary artery ligation. Cardiac function was preserved in the KO mice compared to the WT mice (echocardiography demonstrated higher fractional shortening and fractional area change, p<0.05) at 3, 7 and 28 days after the MI. To evaluate the mechanisms responsible for the functional improvements, cardiac cytokine production was measured. TNF-α, IL-1β and IL-6 were significantly decreased in the infarct region of KO compared to WT mice at 3 days post-MI. On day 7, IL-6 production was significantly decreased in the infarct region and TNF-α was decreased in the non-infarcted region of KO compared to WT mice. Phosphorylation of p38 MAPK was prevented, and the number of TUNEL positive nuclei was reduced in the infarct region of KO compared to WT mice. Phosphorylation of Akt was upregulated in the non-infarcted region of KO mice at 3 days after MI. There were no differences in the phosphorylation of ERK or JNK at the same time point. In vitro study: Myocardial fibroblasts were isolated from KO and WT mice, cultured, and then exposed to hydrogen peroxide. Compared to cells from WT mice, cells from KO mice exhibited greater protection (less cell death) and reduced p38 phosphorylation as early as 5 and 15 minutes after hydrogen peroxide stimulation. Conclusions: TLR2 KO mice allow the assessment of the potential benefits of TLR inhibitors. Reducing TLR2 after an infarction will decrease cytokine production and cell death in a p38 MAPK-dependent manner, which in turn will contribute to the preservation of cardiac function. Early inhibition of TLR2 function may represent a new target to prevent heart failure after MI.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1037
Author(s):  
Md Badrul Alam ◽  
Yoon-Gyung Kwon ◽  
Shakina Yesmin Simu ◽  
Sk Abrar Shahriyar ◽  
Sang Han Lee

Prolonged inflammatory responses can lead to the development of several chronic diseases, such as autoimmune disorders and the development of natural therapeutic agents is required. A murine model was used to assess the anti-inflammatory effects of the megastigmane glucoside, icariside B2 (ICSB), and the assessment was carried out in vitro, and in vivo. The in vitro anti-inflammatory effects of ICSB were tested using LPS-stimulated BV2 cells, and the protein expression levels of inflammatory genes and cytokines were assessed. Mice were subcutaneously injected with 1% carrageenan (CA) to induce acute phase inflammation in the paw. Inflammation was assessed by measuring paw volumes hourly; subsequently, the mice were euthanized and the right hind paw skin was expunged and processed for reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses. ICSB inhibits LPS-stimulated nitric oxide (NO) and prostaglandin E2 (PGE2) generation by reducing the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). ICSB also inhibits the COX-2 enzyme with an IC50 value of 7.80 ± 0.26 µM. Molecular docking analysis revealed that ICSB had a strong binding affinity with both murine and human COX-2 proteins with binding energies of −8 kcal/mol and −7.4 kcal/mol, respectively. ICSB also reduces the manifestation of pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, at their transcriptional and translational level. ICSB hinders inhibitory protein κBα (IκBα) phosphorylation, thereby terminating the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) nuclear translocation. ICSB also represses the mitogen-activated protein kinases (MAPKs) signaling pathways. ICSB (50 mg/kg) showed an anti-edema effect in CA-induced mice and suppressed the CA-induced increases in iNOS and COX-2 protein levels. ICSB attenuated inflammatory responses by downregulating NF-κB expression through interference with extracellular signal-regulated kinase (ERK) and p38 phosphorylation, and by modulating the expression levels of iNOS, COX-2, TNF-α, IL-1β, and IL-6.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5173-5173
Author(s):  
David S. Ritchie ◽  
Victoria Watt

Abstract B cells have been variously shown to induce direct tolerance of antigen specific CD8+ T cells in models of autoimmunity and tumor immunology. We have previously shown that resting B cells also inhibit anti-tumor T cell function and suppress graft versus host disease (GVHD) in a mismatched mouse model. We have extended these findings to reveal that B cell depletion of the donor graft results in more rapid T cell engraftment and higher IL-2, IFN-γ and TNF-α production by engrafting alloagressive T cells. In turn the degree of cytokine production was highly correlated with the degree of weight loss in mice developing GVHD underscoring the importance of T cell derived inflammatory cytokines in the development of GVHD. Conversely, those mice treated with additional resting B cells at the time of marrow infusion showed lower levels of cytokine production from engrafting T cells and subsequently less GVHD. Further, the amount of INF-γ and TNF-α production from alloaggressive T cells post transplant was substantially greater when a donor splenocytes we used to supplement bone marrow. The clinical score and histological examination of mice undergoing splenocyte + bone marrow transplant showed substantially differences compared to that observed in the bone marrow only model The post splenocyte transplant model reflected a hyperacute GVHD syndrome as opposed to clinically relevant, histologically proven acute GVHD derived from the transplant of bone marrow and furhet indicate that rapid disregulated T cells engraftmnet of central to the onset of devastaing GVHD. These findings indicate that resting B cells may regulate T cell engraftment and activation through regulating T cell homeostasis and suppression of inflammatory cytokines. B cells therefore may potentially be used therapeutically to limit GVHD mediated by alloaggressive T cells, whilst profound pre-transplant depletion of B cells may be detrimental to transplant outcome due to the promotion of GVHD.


Sign in / Sign up

Export Citation Format

Share Document