TGF-β1 gene transfer to the mouse colon leads to intestinal fibrosis

2005 ◽  
Vol 289 (1) ◽  
pp. G116-G128 ◽  
Author(s):  
Bruce A. Vallance ◽  
M. Imelda Gunawan ◽  
Bryan Hewlett ◽  
Premysl Bercik ◽  
Corinne Van Kampen ◽  
...  

Crohn's disease (CD) is a chronic, relapsing inflammatory bowel disease, characterized by transmural inflammation. In CD, the recurrent inflammatory injury and tissue repair that occurs in the intestine can progress uncontrollably, leading to the proliferation of mesenchymal cells as well as fibrosis, characterized by excessive extracellular matrix deposition. These processes thicken the bowel wall, reducing flexibility, and often culminate in obstructive strictures. Because no effective measures are currently available to specifically treat or prevent intestinal stricturing, we sought to gain a better understanding of its pathogenesis by developing a mouse model of intestinal fibrosis. Because transforming growth factor (TGF)-β1 can mediate both fibrosis and mesenchymal cell proliferation; we studied the effects of delivering adenoviral vectors encoding spontaneously active TGF-β1 into the colons of mice. We first demonstrated that enema delivery of marker adenoviral vectors led to the transfection of the colonic epithelium and transient transgene expression. Histologically, control vectors caused an acute inflammatory response, involving the recruitment of neutrophils and mononuclear cells into the colonic lamina propria; however, infection caused little if any fibrosis. In contrast, the TGF-β1 vector caused a more severe and prolonged inflammatory response as well as localized collagen deposition, leading to severe and progressive fibrosis. This was accompanied by the emergence of cells with a myofibroblast phenotype. Ultimately the fibrosis resulted in many of the TGF-β1-transfected mice developing profound colonic obstruction. Through adenoviral gene transfer technology, we describe a novel mouse model of colitis and implicate TGF-β1 in the pathogenesis of obstructive intestinal fibrosis.

2007 ◽  
Vol 35 (4) ◽  
pp. 661-664 ◽  
Author(s):  
J. Gauldie ◽  
P. Bonniaud ◽  
P. Sime ◽  
K. Ask ◽  
M. Kolb

Transient adenovirus-mediated gene transfer of active TGF-β1 (transforming growth factor-β1) induces severe and progressive fibrosis in rodent lung without apparent inflammation. Alternatively, transfer of IL-1β (interleukin 1β) induces marked tissue injury and inflammation, which develops into progressive fibrosis, associated with an increase in TGF-β1 concentrations in lung fluid and tissue. Both vector treatments induce a fibrotic response involving myofibroblasts and progressive matrix deposition starting at the peri-bronchial site of expression and extending over days to involve the entire lung and pleural surface. Administration of the TGF-β1 vector to the pleural space induces progressive pleural fibrosis, which minimally extends into the lung parenchyma. The mechanisms involved in progressive fibrosis need to account for the limitation of fibrosis to specific organs (lung fibrosis and not liver fibrosis or vice versa) and the lack of effect of anti-inflammatory treatments in regulating progressive fibrosis. TGF-β1 is a key cytokine in the process of fibrogenesis, using intracellular signalling pathways involving the ALK5 receptor and signalling molecules Smad2 and Smad3. Transient gene transfer of either TGF-β1 or IL-1β to Smad3-null mouse lung provides little evidence of progressive fibrosis and no fibrogenesis-associated genes are induced. These results suggest that mechanisms of progressive fibrosis involve factors presented within the context of the matrix that define the microenvironment for progressive matrix deposition.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hafiz Muhammad Umer Farooqi ◽  
Bohye Kang ◽  
Muhammad Asad Ullah Khalid ◽  
Abdul Rahim Chethikkattuveli Salih ◽  
Kinam Hyun ◽  
...  

AbstractHepatic fibrosis is a foreshadowing of future adverse events like liver cirrhosis, liver failure, and cancer. Hepatic stellate cell activation is the main event of liver fibrosis, which results in excessive extracellular matrix deposition and hepatic parenchyma's disintegration. Several biochemical and molecular assays have been introduced for in vitro study of the hepatic fibrosis progression. However, they do not forecast real-time events happening to the in vitro models. Trans-epithelial electrical resistance (TEER) is used in cell culture science to measure cell monolayer barrier integrity. Herein, we explored TEER measurement's utility for monitoring fibrosis development in a dynamic cell culture microphysiological system. Immortal HepG2 cells and fibroblasts were co-cultured, and transforming growth factor β1 (TGF-β1) was used as a fibrosis stimulus to create a liver fibrosis-on-chip model. A glass chip-based embedded TEER and reactive oxygen species (ROS) sensors were employed to gauge the effect of TGF-β1 within the microphysiological system, which promotes a positive feedback response in fibrosis development. Furthermore, albumin, Urea, CYP450 measurements, and immunofluorescent microscopy were performed to correlate the following data with embedded sensors responses. We found that chip embedded electrochemical sensors could be used as a potential substitute for conventional end-point assays for studying fibrosis in microphysiological systems.


Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 258
Author(s):  
Hyo Yeong Lee ◽  
Somi Nam ◽  
Mi Jeong Kim ◽  
Su Jung Kim ◽  
Sung Hoon Back ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a serious lung disease characterized by excessive collagen matrix deposition and extracellular remodeling. Signaling pathways mediated by fibrotic cytokine transforming growth factor β1 (TGF-β1) make important contributions to pulmonary fibrosis, but it remains unclear how TGF-β1 alters metabolism and modulates the activation and differentiation of pulmonary fibroblasts. We found that TGF-β1 lowers NADH and NADH/NAD levels, possibly due to changes in the TCA cycle, resulting in reductions in the ATP level and oxidative phosphorylation in pulmonary fibroblasts. In addition, we showed that butyrate (C4), a short chain fatty acid (SCFA), exhibits potent antifibrotic activity by inhibiting expression of fibrosis markers. Butyrate treatment inhibited mitochondrial elongation in TGF-β1-treated lung fibroblasts and increased the mitochondrial membrane potential (MMP). Consistent with the mitochondrial observations, butyrate significantly increased ADP, ATP, NADH, and NADH/NAD levels in TGF-β1-treated pulmonary fibroblasts. Collectively, our findings indicate that TGF-β1 induces changes in mitochondrial dynamics and energy metabolism during myofibroblast differentiation, and that these changes can be modulated by butyrate, which enhances mitochondrial function.


2016 ◽  
Vol 29 (4) ◽  
pp. 696-706 ◽  
Author(s):  
Jun Shi ◽  
Yu Liu ◽  
Shihai Yan ◽  
Daonan Yan

Allergic rhinitis (AR) is an inflammatory disease with a hypersensitivity response to environmental stimulus. The aim of this study was to evaluate the effect of Yiqi Wenyang Fang (YWF) on AR and investigate the underlying mechanism. A total of 48 female Sprague-Dawley rats were randomly divided into six groups (normal control, model control, YWF at low dose, YWF at median dose, YWF at high dose, and loratadine). Rats were injected with antigen for sensitization. Then, rats in the YWF groups were treated with different dose of YWF for 28 days. Loratadine was used as a positive control. Number of sneezes, degree of runny nose, nasal rubbing movements, and tissue damage were scored. The protein and mRNA expression of Foxp3 were determined by western blot and real time-PCR analysis, respectively. Flow cytometry was used to detect the number of CD4+CD25+Foxp3+ Treg cells. The content of interleukin (IL)-10, transforming growth factor β1 (TGF-β1), IL-13, and IL-4 in the serum were detected by enzyme-linked immunosorbent assay (ELISA). Scores of symptoms were significantly reduced and nasal mucosa damage was alleviated after YWF administration. YWF increased the expression of Foxp3, IL-10, TGF-β1, and number of CD4+CD25+Foxp3+ Treg cells which were reduced by antigen injection. The expression levels of IL-13 and IL-4 were increased after antigen administration while decreased after YWF treatment. YWF may ameliorate AR through inhibiting inflammatory response and promoting Foxp3 expression.


2021 ◽  
Vol 14 (1) ◽  
pp. 123-131
Author(s):  
Doha M. Beltagy ◽  
Khloud Gamal Abdelsalam ◽  
Tarek M Mohamed ◽  
Mai M. El-Keey

Liver cirrhosis is currently the 11th most common cause of death which includes inflammatory, oxidative damage, and immune response. Harmaline has antioxidant and anti-inflammatory mechanisms which can defeat against hepatic cirrhosis pathways. The present work aimed to evaluate the ameliorating effect of harmaline against liver cirrhosis induced by thioacetamide in mice. The study was carried out on sixty male mice divided into three main groups. Control and harmaline groups (GIa and GIb), thioacetamide-group (GII) and harmaline co-treated and treated groups (GIIIa and GIIIb). By the end of the experiment, adiponectin concentrations were measured in serum and liver tissue. Gene expression of adiponectin, transforming growth factor beta-1 (TGF-β1), tissue inhibitor metalloprotease-1(TIMP-1) and peroxisome proliferator activated receptor-gamma (PPAR-γ) were assessed. Some oxidative stress biomarkers as malondialdehyde, reduced glutathione, catalase, superoxide dismutase and nitric oxide were determined. The results indicated that harmaline administration cause significant suppression of oxidative stress and inflammatory response.Inhibition of hepatic stellate cell activation and extracellular matrix deposition were also noticed with a significant decrease in the expression of the profibrotic markers(TGF-β1 and TIMP-1) which have direct effects on adiponectin activation. These results were confirmed by the histological studies in liver tissue. In Conclusion,Harmaline has excellent protective role against liver cirrhosis induced by thioacetamide in mice via its antioxidant and anti-inflammatory properties.It can be therapeutically used as a safe liver support by a dose of 10 mg/kg after furtherin vivo studies.


2021 ◽  
Author(s):  
Liang Qiao ◽  
Rongxia Li ◽  
Shangang Hu ◽  
Yu Liu ◽  
Hongqiang Liu ◽  
...  

Abstract Objective Previously, the protective effect of microRNA (miR)-145-5p has been discovered in acute lung injury (ALI). Thus, this study attempts to further discuss the mechanism of miR-145-5p in ALI through the downstream E26 transformation-specific proto-oncogene 2 (ETS2)/transforming growth factor β1 (TGF-β1)/Smad pathway. Methods A lipopolysaccharide (LPS)-induced rat ALI model was established. Recombinant adenovirus miR-145-5p and/or ETS2 overexpression plasmid was administrated into rats. Afterwards, pathological damage in the lung tissue, wet/dry (W/D) ratio, apoptosis and contents of serum inflammatory factors were observed. miR-145-5p, ETS2, TGF-β1, Smad2/3, phosphorylated Smad2/3 levels were measured in rats. Results miR-145-5p was down-regulated, ETS2 was up-regulated and TGF-β1/Smad pathway was activated in LPS-suffered rats. Overexpression of miR-145-5p inactivated the TGF-β1/Smad pathway and attenuated ALI, as reflected by relived pathological damage, and decreased W/D ratio, apoptosis and inflammatory response. Oppositely, loss of miR-145-5p or enhancement of ETS2 worsened ALI and activated the TGF-β1/Smad pathway. Moreover, elevation of ETS2 decreased miR-145-5p-mediated protection against ALI. Conclusion Evidently, miR-145-5p negatively regulates ETS2 expression and inactivates TGF-β1/Smad pathway to ameliorate ALI in rats.


2019 ◽  
Vol 47 (4) ◽  
pp. 470-477
Author(s):  
Hany Aly ◽  
Yasmeen Mansi ◽  
Zahraa Ez El Din ◽  
Hala Gabr Metwally ◽  
Amira Sabry

Abstract Background The pathogenesis of bronchopulmonary dysplasia (BPD) includes arrest of alveolar septation and enhanced fibrosis. We hypothesized that mesenchymal stromal cells (MSC) and transforming growth factor-β1 (TGF-β1) in tracheal aspirates of mechanically ventilated premature infants differ in BPD and non-BPD infants. Methods Tracheal aspirates were collected during the first week of life. Mononuclear cells were separated, cultured and immunophenotyped by flow cytometry. MSCs colony/cluster ratio was calculated as an index for dysplastic potentials. TGF-β1 was assessed by enzyme-linked immunosorbent assay (ELISA). Setting: Neonatal intensive care unit. Patients Premature infants at risk for BPD. Results A total of 121 preterm infants were enrolled; 27 of them died and among the 94 survivors 23 infants had BPD. MSCs were identified in younger [gestational age (GA): 30.9±1.7 vs. 31.8±1.8, P=0.025] and smaller [birth weight (BW): 1.3±0.28 vs. 1.44±0.37 kg, P=0.04] infants with lower Apgar scores. The recovery rate of MSCs in BPD and non-BPD groups did not differ. BPD group had significantly smaller colony/cluster ratio compared to non-BPD (0.97 vs. 4.25, P=0.002). TGF-β1 was significantly greater in BPD infants (4173.9±864.3 vs. 3705.8±540.5 pg/mL, P=0.021). Conclusion Infants with BPD had different MSCs morphology and greater TGF-β1 expression. The pathogenesis for these morphological changes of resident lung MSCs needs further studying.


Pharmacology ◽  
2019 ◽  
Vol 104 (1-2) ◽  
pp. 81-89 ◽  
Author(s):  
Jing Liu ◽  
Tan Deng ◽  
Yaxin Wang ◽  
Mengmeng Zhang ◽  
Guannan Zhu ◽  
...  

Background: Intestinal fibrosis is the major complication of Crohn’s disease (CD). There are no other good treatments for CD except surgery and remains a refractory disease. Calycosin (CA), the active component of astragalus membranaceus, has been reported the potential effect on lung fibrosis and renal fibrosis. In this study, we aim to explore the effect of CA on intestinal fibrosis in vitro and the possible signal pathway. Methods: The antifibrotic effect of CA is investigated in human intestinal fibroblasts (CCD-18Co) cells induced by transforming growth factor-β1 (TGF-β1). MTT method was used to screen the concentration of CA. Real-time polymerase chain reaction and western blot analysis were used to evaluate the expression of α-smooth muscle actin (α-SMA), collagen I, and TGF-β/Smad pathway. Results: The results showed that the concentration of CA was 12.5, 25, 50 μmol/L. CA could inhibit the expression of α-SMA and collagen I. In addition, CA regulated the expression of TGF-β/Smad signaling pathway. Conclusion: This study demonstrated that CA could inhibit the activation of CCD-18Co cells and reduce the expression of extracellular matrix. Our study highlighted that CA-inhibited TGF-β/Smad pathway through inhibiting the expression of p-Smad2, p-Smad3, Smad4, and TGF-β1 and raised the Smad7 expression. Therefore, CA might inhibit intestinal fibrosis by inhibiting the TGF-β/Smad pathway.


2010 ◽  
Vol 17 (9) ◽  
pp. 1337-1343 ◽  
Author(s):  
Jennifer T. Brisbin ◽  
Joshua Gong ◽  
Payvand Parvizi ◽  
Shayan Sharif

ABSTRACT Lactobacillus acidophilus, Lactobacillus reuteri, and Lactobacillus salivarius are all normal residents of the chicken gastrointestinal tract. Given the interest in using probiotic bacteria in chicken production and the important role of the microbiota in the development and regulation of the host immune system, the objective of the current study was to examine the differential effects of these bacteria on cytokine gene expression profiles of lymphoid tissue cells. Mononuclear cells isolated from cecal tonsils and spleens of chickens were cocultured with one of the three live bacteria, and gene expression was analyzed via real-time quantitative PCR. All three lactobacilli induced significantly more interleukin 1β (IL-1β) expression in spleen cells than in cecal tonsil cells, indicating a more inflammatory response in the spleen than in cecal tonsils. In cecal tonsil cells, substantial differences were found among strains in the capacity to induce IL-12p40, IL-10, IL-18, transforming growth factor β4 (TGF-β4), and gamma interferon (IFN-γ). In conclusion, we demonstrated that L. acidophilus is more effective at inducing T-helper-1 cytokines while L. salivarius induces a more anti-inflammatory response.


2008 ◽  
Vol 295 (1) ◽  
pp. F253-F263 ◽  
Author(s):  
Xiaohua Shi ◽  
Hong Qu ◽  
Matthias Kretzler ◽  
Chuanyue Wu

The PINCH-1-integrin-linked kinase (ILK)-α-parvin (PIP) complex plays important roles in the regulation of glomerular cell behavior, including podocyte shape change, apoptosis, and mesangial fibronectin matrix deposition. In this study, we show that PINCH-2, a protein that is structurally related to PINCH-1 but encoded by a different gene, is coexpressed with PINCH-1 in podocytes. Treatment of podocytes with transforming growth factor (TGF)-β1 elevated the level of PINCH-2, resulting in increased association of PINCH-2 with ILK and α-parvin and concomitant displacement of PINCH-1 from the PIP complex. To gain insights into the functional consequences of elevated PINCH-2 expression, we overexpressed PINCH-2 in podocytes by infection with an adenovirus encoding PINCH-2. Overexpression of PINCH-2 resulted in displacement of PINCH-1 from the PIP complex and compromised podocyte spreading. The PINCH-2-mediated displacement of PINCH-1, however, did not prompt apoptosis. Interestingly, the effect of PINCH-2 on podocyte spreading depends on differentiation status, as overexpression of PINCH-2 in podocytes that were not fully differentiated did not alter cell spreading. Finally, we show that overexpression of PINCH-2 in mesangial cells resulted in displacement of PINCH-1 from the PIP complex but impaired neither mesangial cell spreading nor fibronectin matrix deposition. These studies suggest that PINCH-2 can substitute for PINCH-1 in at least certain processes in glomerular cells (e.g., podocyte survival signaling and mesangial fibronectin matrix deposition), albeit that an aberrantly high level of PINCH-2 may contribute to TGF-β1-induced alteration in podocyte shape modulation.


Sign in / Sign up

Export Citation Format

Share Document