Effect of dichloroacetate on mechanical performance and metabolism of compromised diaphragm muscle

1992 ◽  
Vol 72 (3) ◽  
pp. 1149-1155 ◽  
Author(s):  
B. P. deBoisblanc ◽  
K. Meszaros ◽  
A. Burns ◽  
G. J. Bagby ◽  
S. Nelson ◽  
...  

We investigated the effect of dichloroacetate (DCA) on tension generation and carbohydrate metabolism of the rat diaphragm in vitro. Isolated diaphragms were placed in individual organ chambers and were hooked to force-displacement transducers. Net lactate production and glucose and lactate oxidation were measured in vitro. Diaphragmatic fatigue was precipitated by in vivo endotoxemic shock, by in vitro hypoxia, or by in vitro repetitive tetanic stimulation. In diaphragms isolated from endotoxemic rats, DCA increased tension generation by 30 and 20% at stimulation frequencies of 20 and 100 Hz, respectively. Associated with changes in mechanical performance, DCA reduced net lactate production by 53% after 60 min of incubation and increased glucose oxidation 54% but had no effect on lactate oxidation. During in vitro hypoxia, DCA reduced net diaphragmatic lactate production by 30% and increased glucose oxidation by 45% but did not attenuate hypoxic fatigue. DCA had no effect on tension generation during repetitive tetanic stimulation. We conclude that DCA improves in vitro diaphragmatic fatigue due to endotoxicosis but not due to hypoxia or repetitive stimulation.

1971 ◽  
Vol 125 (1) ◽  
pp. 93-96 ◽  
Author(s):  
K. A. Rookledge

1. A method is described for perfusing the rat diaphragm muscle. 2. The following parameters were compared in both perfused and non-perfused incubated preparations: water content, sorbitol space, rate of lactate production, and the concentrations of tissue glucose, pyruvate, lactate, hexose phosphate intermediates, ATP and AMP. No significant differences were found. 3. Significant differences, however, were found on comparison of the tissue kept in vitro with the tissue in vivo. Immediately after removal of the tissue from the animal, the concentrations of the hexose phosphates and ATP were found to be much higher than after incubation or perfusion, and the concentrations of free glucose and of AMP were much lower, possibly indicating that the capacity for oxidative phosphorylation of glucose is impaired in vitro because of hypoxia.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Hanyue Chang ◽  
Qiaoshi Xu ◽  
Jiayi Li ◽  
Mingyu Li ◽  
Zhiyuan Zhang ◽  
...  

AbstractPyruvate kinase M2 as a key rate-limiting enzyme in glycolysis, it plays a critical role in metabolic reprogramming and carcinogenesis. However, whether PKM2 can promote immunosuppressive microenvironment formation remains unknown in head and neck squamous cell carcinoma (HNSCC). PKM2 expression was detected using immunohistochemical staining. The biological functions of PKM2 were investigated in vitro and in vivo. Lactate production and the expression of Galectin-9, a critical immunosuppression molecule, were detected after PKM2 knockdown and overexpression in HNSCC cells. The mechanism of lactate regulating Galectin-9 expression through NF-κB signaling was explored in vitro. Overexpression of PKM2 correlates with poor prognosis in HNSCC patients. Silencing PKM2 markedly inhibits proliferation and metastasis capacity in vivo and in vitro, and vice versa. The glycolysis and glycolytic capacity are significantly decreased after PKM2 silencing. Lactate secretion induced by PKM2 significantly promotes migration and invasion capacity. Furthermore, a positive correlation between PKM2 and Galectin-9 expression is observed in HNSCC tissues. The induction of Galectin-9 expression by PKM2 can be affected by a lactate transporter inhibitor. Mechanically, lactate impeded the suppressive transcriptional complex formation of NF-κB and histone deacetylase 3 (HDAC3), which released the transcription of Galectin-9 mediated by NF-κB signaling. Our findings demonstrate that lactate produced by PKM2 upregulation promotes tumor progression and Galectin-9-mediated immunosuppression via NF-κB signaling inhibition in HNSCC, which bridges metabolism and immunosuppression. The novel PKM2-lactate-Galectin-9 axis might be a potential therapeutic target in HNSCC.


1991 ◽  
Vol 3 (5) ◽  
pp. 571 ◽  
Author(s):  
JG Thompson ◽  
AC Simpson ◽  
PA Pugh ◽  
RW Wright ◽  
HR Tervit

Embryos were collected from superovulated donors at various intervals from onset of oestrus, ranging from Day 1.5 to Day 6. In addition, blastocysts obtained from the culture of 1-cell embryos collected in vivo or of oocytes matured and fertilized in vitro were used to assess the effects of in vitro manipulation and culture on glucose utilization. Glycolytic activity was determined by the conversion of [5-3H]glucose to 3H2O, and oxidation of glucose was determined by the conversion of [U-14C]glucose to 14CO2. Glucose utilization increases significantly from the 8-cell stage and during compaction and blastulation. Glucose oxidation was at a relatively low level (5-12% of total utilization) compared with glycolysis. No difference was observed between the glycolytic activity of blastocysts derived from in vivo or in vitro sources. However, glucose oxidation was lower (P less than 0.05) in blastocysts derived from the culture of 1-cell embryos or from oocytes matured and fertilized in vitro. Exogenous tricarboxylic acid cycle substrates (i.e. pyruvate and lactate supplied in the medium) affected the level of glucose oxidation.


1980 ◽  
Vol 239 (6) ◽  
pp. E461-E467 ◽  
Author(s):  
R. Nesher ◽  
I. E. Karl ◽  
D. M. Kipnis

Effects of isometric contraction and catecholamines on glucose and glycogen metabolism in skeletal muscle were investigated with the in vitro rat epitrochlearis preparation. Mechanical performance and glycogenolysis exhibited two phases. During the initial 30 min, muscle work was 30% greater and glycogenolysis 8- to 10-fold faster than the steady-state values in the subsequent 3–4 h of contraction. Glucose uptake was increased by contraction and remained relatively constant during stimulation. Epinephrine (10(-9) to 10(-6) M) and norepinephrine (10(-7) to 10(-5) M) produced inotropic and glycogenolytic effects blocked by propranolol but not phentolamine. Chemical sympathectomy and propranolol blocked the initial glycogenolytic and inotropic effects produced by isometric contraction, suggesting that they were caused by the release of endogenous catecholamines. Net lactate production in resting muscles accounted for > 50% of total glucosyl units utilized. During contraction net lactate production accounted < 10–15% of total glycosyl flux indicating that rat fast-twitch pale muscle is capable of significant rates of aerobic glucose oxidation. Oleate and caprylate did not affect mechanical performance, glycogen, or glucose metabolism in resting or contracting muscles.


2021 ◽  
Author(s):  
Shonagh Russell ◽  
Liping Xu ◽  
Yoonseok Kam ◽  
Dominique Abrahams ◽  
Bryce Ordway ◽  
...  

Aggressive cancers commonly ferment glucose to lactic acid at high rates, even in the presence of oxygen. This is known as aerobic glycolysis, or the “Warburg Effect”. It is widely assumed that this is a consequence of the upregulation of glycolytic enzymes. Oncogenic drivers can increase the expression of most proteins in the glycolytic pathway, including the terminal step of exporting H+ equivalents from the cytoplasm. Proton exporters maintain an alkaline cytoplasmic pH, which can enhance all glycolytic enzyme activities, even in the absence of oncogene-related expression changes. Based on this observation, we hypothesized that increased uptake and fermentative metabolism of glucose could be driven by the expulsion of H+ equivalents from the cell. To test this hypothesis, we stably transfected lowly-glycolytic MCF-7, U2-OS, and glycolytic HEK293 cells to express proton exporting systems: either PMA1 (yeast H+-ATPase) or CAIX (carbonic anhydrase 9). The expression of either exporter in vitro enhanced aerobic glycolysis as measured by glucose consumption, lactate production, and extracellular acidification rate. This resulted in an increased intracellular pH, and metabolomic analyses indicated that this was associated with an increased flux of all glycolytic enzymes upstream of pyruvate kinase. These cells also demonstrated increased migratory and invasive phenotypes in vitro, and these were recapitulated in vivo by more aggressive behavior, whereby the acid-producing cells formed higher grade tumors with higher rates of metastases. Neutralizing tumor acidity with oral buffers reduced the metastatic burden. Therefore, cancer cells with increased H+ export increase intracellular alkalization, even without oncogenic driver mutations, and this is sufficient to alter cancer metabolism towards a Warburg phenotype.


2017 ◽  
Vol 24 (11) ◽  
pp. 565-578 ◽  
Author(s):  
Hongqiang Wang ◽  
Rui Zhou ◽  
Li Sun ◽  
Jianling Xia ◽  
Xuchun Yang ◽  
...  

Aerobic glycolysis plays an important role in cancer progression. New target genes regulating cancer aerobic glycolysis must be explored to improve patient prognosis. Mitochondrial topoisomerase I (TOP1MT) deficiency suppresses glucose oxidative metabolism but enhances glycolysis in normal cells. Here, we examined the role of TOP1MT in gastric cancer (GC) and attempted to determine the underlying mechanism. Using in vitro and in vivo experiments and analyzing the clinicopathological characteristics of patients with GC, we found that TOP1MT expression was lower in GC samples than in adjacent nonmalignant tissues. TOP1MT knockdown significantly promoted GC migration and invasion in vitro and in vivo. Importantly, TOP1MT silencing increased glucose consumption, lactate production, glucose transporter 1 expression and the epithelial-mesenchymal transition (EMT) in GC. Additionally, regulation of glucose metabolism induced by TOP1MT was significantly associated with lactate dehydrogenase A (LDHA) expression. A retrospective analysis of clinical data from 295 patients with GC demonstrated that low TOP1MT expression was associated with lymph node metastasis, recurrence and high mortality rates. TOP1MT deficiency enhanced glucose aerobic glycolysis by stimulating LDHA to promote GC progression.


1990 ◽  
Vol 69 (4) ◽  
pp. 1390-1396 ◽  
Author(s):  
E. Derom ◽  
S. Janssens ◽  
V. De Bock ◽  
M. Decramer

We examined the effects of theophylline on contractile properties and high-frequency fatigue of canine diaphragm in vitro. Eighteen diaphragm muscle bundles were obtained from 10 anesthetized dogs and equilibrated in oxygenated Krebs solution to 100, 200, or 300 mg/l theophylline. These bundles were compared with 18 matched control bundles from the contralateral hemidiaphragm. No statistically significant differences in twitch tension, tetanic tension, twitch-to-tetanus ratio, time to peak tension, or half-relaxation time were observed. Concentrations of 300 mg/l theophylline, however, significantly (P less than 0.05) increased force production at 10 Hz by 32%. A similar tendency was present at lower concentrations and exhibited a clear dose-response behavior. High-frequency fatigue was similar in control and theophylline-treated bundles. We conclude that supratherapeutic in vitro concentrations of theophylline do not increase maximal tetanic tension and do not protect against muscle fatigue but potentiate relative force production at low stimulation frequencies. This relatively small effect cannot be explained by poor diffusion of the drug in the muscle bundle, because theophylline concentrations in the muscle bath and in the muscle bundle were virtually identical. Moreover, it remains unclear whether this potentially beneficial effect can be achieved at in vivo attainable serum concentrations.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Koudong Zhang ◽  
Hang Hu ◽  
Juan Xu ◽  
Limin Qiu ◽  
Haitao Chen ◽  
...  

Abstract Background Lung cancer (LC) is a malignant tumor originating in the bronchial mucosa or gland of the lung. Circular RNAs (circRNAs) are proved to be key regulators of tumor progression. However, the regulatory effect of circ_0001421 on lung cancer tumorigenesis remains unclear. Methods The expression levels of circ_0001421, microRNA-4677-3p (miR-4677-3p) and cell division cycle associated 3 (CDCA3) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Methyl thiazolyl tetrazolium (MTT), Transwell and Tumor formation assays were performed to explore the role of circ_0001421 in LC. Glucose consumption and lactate production were examined by a Glucose assay kit and a Lactic Acid assay kit. Western blot was utilized to examine the protein levels of Hexokinase 2 (HK2) and CDCA3. The interaction between miR-4677-3p and circ_0001421 or CDCA3 was confirmed by dual-luciferase reporter assay. Results Circ_0001421 was increased in LC tissues and cells, and knockdown of circ_0001421 repressed cell proliferation, migration, invasion and glycolysis in vitro. Meanwhile, circ_0001421 knockdown inhibited LC tumor growth in vivo. Mechanistically, circ_0001421 could bind to miR-4677-3p, and CDCA3 was a target of miR-4677-3p. Rescue assays manifested that silencing miR-4677-3p or CDCA3 overexpression reversed circ_0001421 knockdown-mediated suppression on cell proliferation, migration, invasion and glycolysis in LC cells. Conclusion Circ_0001421 promoted cell proliferation, migration, invasion and glycolysis in LC by regulating the miR-4677-3p/CDCA3 axis, which providing a new mechanism for LC tumor progression.


2019 ◽  
Vol 40 (12) ◽  
pp. 1545-1556 ◽  
Author(s):  
Krishna B Singh ◽  
Eun-Ryeong Hahm ◽  
Joshi J Alumkal ◽  
Lesley M Foley ◽  
T Kevin Hitchens ◽  
...  

Abstract Inhibition of metabolic re-programming represents an attractive approach for prevention of prostate cancer. Studies have implicated increased synthesis of fatty acids or glycolysis in pathogenesis of human prostate cancers. We have shown previously that prostate cancer prevention by sulforaphane (SFN) in Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model is associated with inhibition of fatty acid metabolism. This study utilized human prostate cancer cell lines (LNCaP, 22Rv1 and PC-3), two different transgenic mouse models (TRAMP and Hi-Myc) and plasma specimens from a clinical study to explore the glycolysis inhibition potential of SFN. We found that SFN treatment: (i) decreased real-time extracellular acidification rate in LNCaP, but not in PC-3 cell line; (ii) significantly downregulated expression of hexokinase II (HKII), pyruvate kinase M2 and/or lactate dehydrogenase A (LDHA) in vitro in cells and in vivo in neoplastic lesions in the prostate of TRAMP and Hi-Myc mice; and (iii) significantly suppressed glycolysis in prostate of Hi-Myc mice as measured by ex vivo1H magnetic resonance spectroscopy. SFN treatment did not decrease glucose uptake or expression of glucose transporters in cells. Overexpression of c-Myc, but not constitutively active Akt, conferred protection against SFN-mediated downregulation of HKII and LDHA protein expression and suppression of lactate levels. Examination of plasma lactate levels in prostate cancer patients following administration of an SFN-rich broccoli sprout extract failed to show declines in its levels. Additional clinical trials are needed to determine whether SFN treatment can decrease lactate production in human prostate tumors.


Blood ◽  
1972 ◽  
Vol 39 (3) ◽  
pp. 415-425 ◽  
Author(s):  
Larry Waterbury ◽  
Eugene P. Frenkel

Abstract Hereditary nonspherocytic hemolysis associated with abnormal erythrocyte phosphofructokinase activity was demonstrated in a young man. Enzyme activity in the propositus, his mother, and maternal grandmother was approximately 60% of normal controls. There was markedly increased lability of enzyme activity on in vitro storage. Kinetic studies revealed increased sensitivity to adenosine triphosphate inhibition. Erythrocyte adenosine triphosphate levels were depressed. The absence of muscle disease and the presence of normal in vivo lactate production following ischemic exercise differentiated this kindred from those with Type VII glycogen storage disease.


Sign in / Sign up

Export Citation Format

Share Document