scholarly journals Electroless Deposition of Ni-Cu-P Coatings Containing Nano-Al2O3Particles and Study of Its Corrosion Protective Behaviour in 0.5 M H2SO4

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
H. Ashassi-Sorkhabi ◽  
H. Aminikia ◽  
R. Bagheri

Ni-Cu-P/nano-Al2O3composite coatings are prepared on mild steel from an alkaline electroless plating bath containing different concentrations of Al2O3nanoparticles. The protective effect of codeposited nanoparticles on the corrosion behaviour of the coatings is studied in 0.5 M H2SO4solution. The electrochemical methods, that is, electrochemical noise (ECN), electrochemical impedance spectroscopy (EIS), and polarization measurements, are used to characterize the corrosion properties of the coatings. The results show that the inclusion of nanosized particles leads to significant improvement of corrosion resistance of the coatings. The highest corrosion resistance is obtained at 20 ppm of nanoparticles concentration in the plating bath. The ECN measurements results are in good agreement with results obtained from two other electrochemical methods after trend removal. The SEM images prove that nano-Al2O3particles were embedded in the Ni-Cu-P matrix and are dispersed uniformly on the coating surface.

Author(s):  
Simona BOICIUC ◽  
◽  
◽  

The undertaken research which is described in this paper aims at the corrosion behaviour of composite coatings in nickel matrix using as dispersed phase technical alumina with dimensions of 5 μm and their characterization from a microstructural point of view. The corrosion resistance in the saline fog of the coatings is influenced by the microstructure, the stresses developed in the layer and the roughness.


2011 ◽  
Vol 399-401 ◽  
pp. 2055-2060
Author(s):  
Ji Bo Jiang ◽  
Wei Dong Liu ◽  
Lei Zhang ◽  
Qing Dong Zhong ◽  
Yi Wang ◽  
...  

Ni–B4C composite coatings on carbon steel substrates with various contents of B4C nano-particulates were prepared by electrodeposition in Ni plating bath containing B4C nano-particulates. Microhardness, Scanning Electron Microscopy (SEM), Tafel polarization and Electrochemical Impedance Spectroscopy (EIS) measurements were used to compare pure nickel coatings and Ni–B4C composite coatings. Pure Ni coating microhardness is lower than that of Ni–B4C coatings and the microhardness of the composite coatings increases with the increase of the content of B4C nano-particulates. The effects of various contents of B4C nano-particulates on the corrosion resistance were investigated and it was found that the best anti–corrosion property of Ni–B4C composite coatings is at 6 g/L B4C in the bath formulation.


2008 ◽  
Vol 22 (18n19) ◽  
pp. 3031-3036 ◽  
Author(s):  
FARYAD BIGDELI ◽  
SAEED REZA ALLAHKARAM

Composite coatings constitute a new class of materials which are mostly used for mechanical and tribological applications. The corrosion resistance of these composite coatings, however, has not been systematically studied and compared. In this study, electroless Ni – P composite coatings are formed on St 37 steel through the addition of nano-scale SiC particles to the plating bath. This work aimed to investigate the corrosion characteristics of electroless nickel composite coatings using electrochemical measurements which include polarization and electrochemical impedance spectroscopy tests. The morphology and structure of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectrum (EDS) and X-ray diffraction (XRD). The results showed that both electroless nickel and electroless nickel composite coatings demonstrated significant improvement of corrosion resistance in salty atmosphere.


2020 ◽  
Vol 993 ◽  
pp. 1075-1085
Author(s):  
Li Fan ◽  
Hai Yan Chen ◽  
Hai Liang Du ◽  
Yue Hou ◽  
Qian Cheng

Nickel-based composite coatings reinforced by spherical tungsten carbide were deposited on 42CrMo alloy steel using plasma transfer arc welding (PTAW) process. Their electrochemical corrosion properties in NaCl solution under atmospheric and high pressure were studied by polarization curve, electrochemical impedance spectroscopy. The corrosion and erosion resistance of the coatings were also investigated by salt spray corrosion and erosion corrosion tests. The results show that the self-corrosion potential of the composite coatings increased with the increase of tungsten carbide content, and the Cr element in Ni60 sample formed a stable and compact passivation film. Compared with corrosion at atmospheric pressure, the adsorption and penetration of Cl- on the coating surface enhanced due to the increase of Cl- activity under pressure, thereby to weaken the corrosion resistance. The Samples that passivated in salt spray environment, cannot completely hinder the corrosion of the coating, just only to slow down the corrosion. This study can provide theoretical basis for deep-sea oil drilling and production engineering equipment.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2307 ◽  
Author(s):  
Lu Hao ◽  
Guowei Lv ◽  
Yaqian Zhou ◽  
Kaiming Zhu ◽  
Mochen Dong ◽  
...  

Zinc is widely used in battery negative electrodes and steel coatings for automotive industries. The anti-corrosion property of zinc is the most important factor determining the performance and lifetime of the products. In this paper, both size-controlled poly N-(vinyl)pyrrole (PNVPY) nanoparticles and carbon black (CB) nanoparticles were compounded with poly (vinyl butyral) (PVB) binder developing a series of composite coatings covered on the zinc substrates using a spin-coating technique. The morphologies of the surface and cross section of the PNVPY/CB/PVB coatings indicate that the PNVPY and CB nanoparticles are uniformly distributed in the matrix. The corrosion resistance of the composite coatings was tested by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization in a 3.5% NaCl solution. It is found that the coating with 1.9 wt.% PNVPY and 2.3 wt.% CB nanoparticles shows a remarkably high resistance value (Rc) and corrosion protection efficiency (99.99%). Meanwhile, the immersion results also reveal its superior corrosion resistance. It is considered that the nanoscale dispersion of PNVPY and carbon in PVB matrix and the strong interface action between the nanoparticles and PVB result in the uniform microstructure of the composites which endues the superior corrosion properties of the coatings.


2015 ◽  
Vol 227 ◽  
pp. 459-462
Author(s):  
Iwona Kot ◽  
Halina Krawiec

The corrosion resistance of magnesium alloys depends on their microstructure, especially the presence of different intermetallic phases and precipitates. In this paper, the electrochemical behaviour of Mg1Ca and Mg1Ca1Si magnesium alloys has been investigated in the Ringer’s solution at 37 °C. In order to improve the corrosion resistance of these magnesium alloys composite coatings were fabricated by modification of a chitosan layer. The coatings were prepared by dip-coating in a chitosan solution and then modified by electrochemical deposition of a layer from a solution containing fluorine ions and water glass. The electrochemical performance of chitosan and chitosan modified coated alloys was evaluated by linear sweep voltamperometry and electrochemical impedance spectroscopy. The coated magnesium alloys possess suitable corrosion behaviour for the application as biodegradable implant material.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 704
Author(s):  
Marija Riđošić ◽  
Nebojša D. Nikolić ◽  
Asier Salicio-Paz ◽  
Eva García-Lecina ◽  
Ljiljana S. Živković ◽  
...  

Electrodeposition and characterization of novel ceria-doped Zn-Co composite coatings was the main goal of this research. Electrodeposited composite coatings were compared to pure Zn-Co coatings obtained under the same conditions. The effect of two ceria sources, powder and home-made sol, on the morphology and corrosion resistance of the composite coatings was determined. During the electrodeposition process the plating solution was successfully agitated in an ultrasound bath. The source of the particles was found to influence the stability and dispersity of plating solutions. The application of ceria sol resulted in an increase of the ceria content in the resulting coating and favored the refinement from cauliflower-like morphology (Zn-Co) to uniform and compact coral-like structure (Zn-Co-CeO2 sol). The corrosion resistance of the composite coatings was enhanced compared to bare Zn-Co as evidenced by electrochemical impedance spectroscopy and scanning Kelvin probe results. Zn-Co doped with ceria particles originating from ceria sol exhibited superior corrosion resistance compared to Zn-Co-CeO2 (powder) coatings. The self-healing rate of artificial defect was calculated based on measured Volta potential difference for which Zn-Co-CeO2 (sol) coatings exhibited a self-healing rate of 73.28% in a chloride-rich environment.


2005 ◽  
Vol 11 (S03) ◽  
pp. 82-85 ◽  
Author(s):  
E. T. Uzumaki ◽  
C. S. Lambert ◽  
A. R. Santos Jr. ◽  
C. A. C. Zavaglia

Diamond-like carbon (DLC) films have been intensively studied with a view to improving orthopaedic implants. Studies have indicated smoothness of the surface, low friction, high wear resistance, corrosion resistance and biocompatibility [1-4]. DLC coatings can be deposited using various techniques, such as plasma assisted chemical vapour deposition (PACVD), magnetron sputtering, laser ablation, and others [5]. However it has proved difficult to obtain films which exhibit good adhesion. The plasma immersion process, unlike the conventional techniques, allows the deposition of DLC on three-dimensional workpieces, even without moving the sample, without an intermediate layer, and with high adhesion [6], an important aspect for orthopaedic articulations. In our previous work, DLC coatings were deposited on silicon and Ti-13Nb-13Zr alloy substrates using the plasma immersion process for the characterization of microstructure, mechanical properties and corrosion behaviour [7-9]. Hardness, measured by a nanoindenter, ranged from 16.4-17.6 GPa, the pull test results indicate the good adhesion of DLC coatings to Ti-13Nb-13Zr, and electrochemical assays (polarization test and electrochemical impedance spectroscopy) indicate that DLC coatings produced by plasma immersion can improve the corrosion resistance [9].


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6790
Author(s):  
Viera Zatkalíková ◽  
Juraj Halanda ◽  
Dušan Vaňa ◽  
Milan Uhríčik ◽  
Lenka Markovičová ◽  
...  

Plasma immersion ion implantation (PIII) of nitrogen is low-temperature surface technology which enables the improvement of tribological properties without a deterioration of the corrosion behavior of austenitic stainless steels. In this paper the corrosion properties of PIII-treated AISI 316L stainless steel surfaces are evaluated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PP) and exposure immersion tests (all carried out in the 0.9 wt. % NaCl solution at 37 ± 0.5 °C) and compared with a non-treated surface. Results of the three performed independent corrosion tests consistently confirmed a significant increase in the corrosion resistance after two doses of PIII nitriding.


Author(s):  
Muddasir Nawaz ◽  
Sehrish Habib ◽  
Adnan Khan ◽  
Abdul Shakoor ◽  
Ramazan Kahraman

The use of organic coating for the metals has been widely being used to protect the surface against corrosion. Polymeric coating incorporated with Nanocontainers loaded with inhibitor and self-healing provides better corrosion resistance. Cellulose microfibers (CMFs) used as smart carriers were synthesized and loaded with dodecylamine (DOC)-inhibitor and polyethyleneimine (PEI)-both inhibitor and self-healing agents. Smart polymeric coatings were developed by mixing CMF/DOC and CMFs/PEI into the epoxy matrix. Reference coatings (that has only CMFs) were also prepared for a compersion. Scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR) and thermal gravitational analysis (TGA) were used to confirm the loading of DOC and PEI onto the CMFs. UV-vis analysis indicates that the self-release of inhibitor from CMFs is sensitive to pH of the solution and the immersion time. Recovery of controlled surface damage confirms the decent self-healing ability of the prepared smart coatings is due to the efficient release of inhibitor (DOC) and self-healing agent (PEI) in the damaged area leading to the formation of a protective film. Electrochemical impedance spectroscopy (EIS) results demonstrate that corrosion resistance of the smart coating increases with an increase in immersion time which is due to the progressive release of inhibitors from CMFs in response to the pH change. Therefore, smart coatings demonstrate superior properties as compared to the reference coatings. The study reveals the polymeric composite coatings have potential to inhibit the corrosion of steel for oil and gas industry.


Sign in / Sign up

Export Citation Format

Share Document