scholarly journals Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Vivek Kumar Gupta ◽  
Shweta Singh ◽  
Anju Agrawal ◽  
Nikhat Jamal Siddiqi ◽  
Bechan Sharma

Almost all the environmental components including both the abiotic and biotic factors have been consistently threatened by excessive contamination of heavy metals continuously released from various sources. Different heavy metals have been reported to generate adverse effects in many ways. Heavy metals induced neurotoxicity and impairment in signalling cascade leading to cell death (apoptosis) has been indicated by several workers. On one hand, these metals are required by the cellular systems to regulate various biological functions of normal cells, while on the other their biomagnification in the cellular systems produces adverse effects. The mechanism by which the heavy metals induce neurotoxicity follows free radicals production pathway(s) specially the generation of reactive oxygen species and reactive nitrogen species. These free radicals produced in excess have been shown to create an imbalance between the oxidative and antioxidative systems leading to emergence of oxidative stress, which may cause necrosis, DNA damage, and many neurodegenerative disorders. This mini review summarizes the current knowledge available on the protective role of varied natural products isolated from different herbs/plants in imparting protection against heavy metals (cadmium, lead, arsenic, and mercury) mediated neurotoxicity.

2021 ◽  
Vol 11 (2) ◽  
pp. 580
Author(s):  
Camilla Roveta ◽  
Anna Annibaldi ◽  
Afghan Afghan ◽  
Barbara Calcinai ◽  
Cristina Gioia Di Camillo ◽  
...  

Coastal areas are known to receive significant anthropogenic inputs, mainly deriving from metropolitan areas, industries, and activities related to tourism. Among these inputs, some trace elements are listed as priority pollutants in the European Water Framework Directive, due to their ability to bioaccumulate in organisms. Many studies have been conducted on heavy metals (HMs) accumulation and on their possible effects on different edible marine species. While the most studied sessile organisms are bivalves, in the current review, we focus our attention on other sessile taxa (sponges, cnidarians, bryozoans, polychaetes, cirripeds, and tunicates), proposed as bioindicators in coastal shallow waters. Although their potential as bioindicator tools has been repeatedly highlighted in the literature, these organisms are still poorly investigated and considered for monitoring. In this context, we analyze the available literature about this topic, in order to summarize the current knowledge and identify possible applications of these organisms in a bioremediation scenario.


2012 ◽  
Vol 15 (3) ◽  
pp. 253-263 ◽  
Author(s):  
Karen M. O’Connell ◽  
Marguerite T. Littleton-Kearney

Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.


Biomolecules ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 65 ◽  
Author(s):  
Saleem Banihani

Since 1963, various research studies and reports have demonstrated the role of uric acid (2,6,8-trihydroxypurine), an end product of adenosine and guanosine catabolism, on semen quality and sperm function. However, this effect has not yet been collectively discussed, even though uric acid has been a well-recognized constituent in semen. Here, we systematically and comprehensively discuss and summarize the role/effect of uric acid in semen quality by searching the main databases for English language articles considering this topic. Additionally, certain significant and relevant papers were considered to support discussions and perceptions. In conclusion, uric acid contributes to maintaining and enhancing sperm motility, viability, and morphology; therefore, protecting sperm function and fertilizing ability. This contribution is performed mainly by neutralizing the damaging effect of oxidizing (e.g., endogenous free radicals and exogenous toxins) and nitrating agents and enhancing certain bioactive enzymes in spermatozoa. In contrast, high levels of uric acid may induce adverse effects to sperm function, at least in part, by reducing the activity of vital enzymes in spermatozoa. However, further research, mainly clinical, is still required to fully explore the role/effect of uric acid in semen.


2021 ◽  
Vol 2 ◽  
Author(s):  
Latifa Koussih ◽  
Samira Atoui ◽  
Omar Tliba ◽  
Abdelilah S. Gounni

Pentraxins are soluble pattern recognition receptors that play a major role in regulating innate immune responses. Through their interaction with complement components, Fcγ receptors, and different microbial moieties, Pentraxins cause an amplification of the inflammatory response. Pentraxin-3 is of particular interest since it was identified as a biomarker for several immune-pathological diseases. In allergic asthma, pentraxin-3 is produced by immune and structural cells and is up-regulated by pro-asthmatic cytokines such as TNFα and IL-1β. Strikingly, some recent experimental evidence demonstrated a protective role of pentraxin-3 in chronic airway inflammatory diseases such as allergic asthma. Indeed, reduced pentraxin-3 levels have been associated with neutrophilic inflammation, Th17 immune response, insensitivity to standard therapeutics and a severe form of the disease. In this review, we will summarize the current knowledge of the role of pentraxin-3 in innate immune response and discuss the protective role of pentraxin-3 in allergic asthma.


2021 ◽  
Author(s):  
Ayman Ahmed Bassiouny El-Amawy ◽  
Samir Attia Mohammed Zaahkouk ◽  
Hesham Gamal Abdel Rasheed ◽  
Bassem Elsayed Elaraby Mohammed

Abstract The study was designed to clarify the hepato-renal protective effects of propolis extract against heavy metals-induced toxicity via oral administration to the males of albino rats. Lead (Pb), Nickel (Ni), Cadmium (Cd), and Antimony (Sb) are toxic heavy metals have the ability to produce reactive radicals in the biological systems causing public and animals health hazards through disrupting balances between pro-oxidant and antioxidant defense system, resulting in excessive reactive oxygen species (ROS) production. The most commonly affected organs are liver and kidney. Propolis is a natural product with different shapes and resinous substance collected by honey bees, it attenuates many diseases damage due to its anti-oxidative action and its potentiality to minimize the deleterious effects of free radicals on tissues. The concentrations of Pb, Cd, Ni and Sb as well as the activities of antioxidants endogenous enzymes including; glutathione peroxidase (Gpx), glutathione reductase (GR), catalase (CAT), and superoxide dismutase (SOD) were all determined in the tissues of liver and kidney; while aspartate transaminase (ASAT), alanine transaminase (ALAT), total protein (TP), urea and createnine, were measured in the serum of experimental rats beside histopathologicl examination in the tissues of liver and kidney. The oral administration of propolis provided a significantly therapeutic role against multi-metals-induced hepato-renal toxicity with relative improving to histopathological changes because of its scavenging and chelating properties as concluded from the present investigation.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 688 ◽  
Author(s):  
Marco Micera ◽  
Alfonso Botto ◽  
Federica Geddo ◽  
Susanna Antoniotti ◽  
Cinzia Margherita Bertea ◽  
...  

Squalene (SQ) is a natural triterpene widely distributed in nature. It is a metabolic intermediate of the sterol biosynthetic pathway and represents a possible target in different metabolic and oxidative stress-related disorders. Growing interest has been focused on SQ’s antioxidant properties, derived from its chemical structure. Strong evidence provided by ex vivo models underline its scavenging activity towards free radicals, whereas only a few studies have highlighted its effect in cellular models of oxidative stress. Given the role of unbalanced free radicals in both the onset and progression of several cardiovascular diseases, an in depth evaluation of SQ’s contribution to antioxidant defense mechanisms could represent a strategic approach in dealing with these pathological conditions. At present experimental results overall show a double-edged sword role of squalene in cardiovascular diseases and its function has to be better elucidated in order to establish intervention lines focused on its features. This review aims to summarize current knowledge about endogenous and exogenous sources of SQ and to point out the controversial role of SQ in cardiovascular physiology.


Author(s):  
Lourdes Rey ◽  
Sergio Mérida-López ◽  
Nicolás Sánchez-Álvarez ◽  
Natalio Extremera

This study contributes to current knowledge on the protective role of emotional intelligence and flourishing in cases of suicide risk (namely depressive symptoms and suicidal ideation) in a sample of adolescent victims of traditional bullying. The proposed model tested the mediator role of flourishing in the relationship between emotional intelligence (EI) and suicide risk together with the moderating effect of EI in the relationship between low flourishing and increased suicide risk. Considering an initial sample of 1847 adolescents (52.5% female), a subsample of 494 pure bullying victims (61.3% female) took part in this research. The main results showed EI to be linked to decreased suicide risk through levels of flourishing. Moreover, EI buffered the relationship between low flourishing and the associated suicide risk. Victimized adolescents with both low levels of EI and of flourishing reported higher levels of suicide risk than their counterparts with high EI levels. This suggests the protective role of EI of both predicting higher flourishing and reducing the likelihood of suicide risk among victimized adolescents with low levels of flourishing. Finally, the practical implications of these novel findings regarding the role of EI and flourishing in the prevention of suicide risk among victimized adolescents are discussed.


2018 ◽  
Vol 25 (3) ◽  
pp. 324-335 ◽  
Author(s):  
Mirjana B. Colovic ◽  
Vesna M. Vasic ◽  
Dragan M. Djuric ◽  
Danijela Z. Krstic

Background: Sulphur is an abundant element in biological systems, which plays an important role in processes essential for life as a constituent of proteins, vitamins and other crucial biomolecules. The major source of sulphur for humans is plants being able to use inorganic sulphur in the purpose of sulphur-containing amino acids synthesis. Sulphur-containing amino acids include methionine, cysteine, homocysteine, and taurine. Methionine and cysteine are classified as proteinogenic, canonic amino acids incorporated in protein structure. Sulphur amino acids are involved in the synthesis of intracellular antioxidants such as glutathione and N-acetyl cysteine. Moreover, naturally occurring sulphur-containing ligands are effective and safe detoxifying agents, often used in order to prevent toxic metal ions effects and their accumulation in human body. Methods: Literature search for peer-reviewed articles was performed using PubMed and Scopus databases, and utilizing appropriate keywords. Results: This review is focused on sulphur-containing amino acids – methionine, cysteine, taurine, and their derivatives – glutathione and N-acetylcysteine, and their defense effects as antioxidant agents against free radicals. Additionally, the protective effects of sulphur-containing ligands against the toxic effects of heavy and transition metal ions, and their reactivation role towards the enzyme inhibition are described. Conclusion: Sulphur-containing amino acids represent a powerful part of cell antioxidant system. Thus, they are essential in the maintenance of normal cellular functions and health. In addition to their worthy antioxidant action, sulphur-containing amino acids may offer a chelating site for heavy metals. Accordingly, they may be supplemented during chelating therapy, providing beneficial effects in eliminating toxic metals.


Sign in / Sign up

Export Citation Format

Share Document