scholarly journals Brain Plasticity following Intensive Bimanual Therapy in Children with Hemiparesis: Preliminary Evidence

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Maya Weinstein ◽  
Vicki Myers ◽  
Dido Green ◽  
Mitchell Schertz ◽  
Shelly I. Shiran ◽  
...  

Neuroplasticity studies examining children with hemiparesis (CH) have focused predominantly on unilateral interventions. CH also have bimanual coordination impairments with bimanual interventions showing benefits. We explored neuroplasticity following hand-arm bimanual intensive therapy (HABIT) of 60 hours in twelve CH (6 females, mean age 11 ± 3.6 y). Serial behavioral evaluations and MR imaging including diffusion tensor (DTI) and functional (fMRI) imaging were performed before, immediately after, and at 6-week follow-up. Manual skills were assessed repeatedly with the Assisting Hand Assessment, Children’s Hand Experience Questionnaire, and Jebsen-Taylor Test of Hand Function. Beta values, indicating the level of activation, and lateralization index (LI), indicating the pattern of brain activation, were computed from fMRI. White matter integrity of major fibers was assessed using DTI. 11/12 children showed improvement after intervention in at least one measure, with 8/12 improving on two or more tests. Changes were retained in 6/8 children at follow-up. Beta activation in the affected hemisphere increased at follow-up, and LI increased both after intervention and at follow-up. Correlations between LI and motor function emerged after intervention. Increased white matter integrity was detected in the corpus callosum and corticospinal tract after intervention in about half of the participants. Results provide first evidence for neuroplasticity changes following bimanual intervention in CH.

2018 ◽  
Vol 24 (8) ◽  
pp. 781-792 ◽  
Author(s):  
Donna L. Murdaugh ◽  
Tricia Z. King ◽  
Binjian Sun ◽  
Richard A. Jones ◽  
Kim E. Ono ◽  
...  

AbstractObjectives: The aim of this study was to investigate alterations in functional connectivity, white matter integrity, and cognitive abilities due to sports-related concussion (SRC) in adolescents using a prospective longitudinal design. Methods: We assessed male high school football players (ages 14–18) with (n=16) and without (n=12) SRC using complementary resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI) along with cognitive performance using the Immediate Post-Concussive Assessment and Cognitive Testing (ImPACT). We assessed both changes at the acute phase (<7 days post-SRC) and at 21 days later, as well as, differences between athletes with SRC and age- and team-matched control athletes. Results: The results revealed rs-fMRI hyperconnectivity within posterior brain regions (e.g., precuneus and cerebellum), and hypoconnectivity in more anterior areas (e.g., inferior and middle frontal gyri) when comparing SRC group to control group acutely. Performance on the ImPACT (visual/verbal memory composites) was correlated with resting state network connectivity at both time points. DTI results revealed altered diffusion in the SRC group along a segment of the corticospinal tract and the superior longitudinal fasciculus in the acute phase of SRC. No differences between the SRC group and control group were seen at follow-up imaging. Conclusions: Acute effects of SRC are associated with both hyperconnectivity and hypoconnectivity, with disruption of white matter integrity. In addition, acute memory performance was most sensitive to these changes. After 21 days, adolescents with SRC returned to baseline performance, although chronic hyperconnectivity of these regions could place these adolescents at greater risk for secondary neuropathological changes, necessitating future follow-up. (JINS, 2018, 24, 781–792)


2021 ◽  
Vol 80 (2) ◽  
pp. 567-576
Author(s):  
Fei Han ◽  
Fei-Fei Zhai ◽  
Ming-Li Li ◽  
Li-Xin Zhou ◽  
Jun Ni ◽  
...  

Background: Mechanisms through which arterial stiffness impacts cognitive function are crucial for devising better strategies to prevent cognitive decline. Objective: To examine the associations of arterial stiffness with white matter integrity and cognition in community dwellings, and to investigate whether white matter injury was the intermediate of the associations between arterial stiffness and cognition. Methods: This study was a cross-sectional analysis on 952 subjects (aged 55.5±9.1 years) who underwent diffusion tensor imaging and measurement of brachial-ankle pulse wave velocity (baPWV). Both linear regression and tract-based spatial statistics were used to investigate the association between baPWV and white matter integrity. The association between baPWV and global cognitive function, measured as the mini-mental state examination (MMSE) was evaluated. Mediation analysis was performed to assess the influence of white matter integrity on the association of baPWV with MMSE. Results: Increased baPWV was significantly associated with lower mean global fractional anisotropy (β= –0.118, p < 0.001), higher mean diffusivity (β= 0.161, p < 0.001), axial diffusivity (β= 0.160, p < 0.001), and radial diffusivity (β= 0.147, p < 0.001) after adjustment of age, sex, and hypertension, which were measures having a direct effect on arterial stiffness and white matter integrity. After adjustment of age, sex, education, apolipoprotein E ɛ4, cardiovascular risk factors, and brain atrophy, we found an association of increased baPWV with worse performance on MMSE (β= –0.093, p = 0.011). White matter disruption partially mediated the effect of baPWV on MMSE. Conclusion: Arterial stiffness is associated with white matter disruption and cognitive decline. Reduced white matter integrity partially explained the effect of arterial stiffness on cognition.


2020 ◽  
pp. 197140092098031
Author(s):  
Pranjal Phukan ◽  
Kalyan Sarma ◽  
Aman Yusuf Khan ◽  
Bhupen Barman ◽  
Md Jamil ◽  
...  

Background and purpose Magnetic resonance imaging (MRI) of the brain in scrub typhus meningoencephalitis is non-specific, and in the majority of the cases, conventional MRI fails to detect any abnormality. However, autopsy reports depict central nervous system involvement in almost all patients. There is therefore a need for research on the quantitative assessment of brain parenchyma that can detect microstructural abnormalities. The study aimed to assess the microstructural integrity changes of scrub typhus meningoencephalitis by using different diffusion tensor imaging (DTI) parameters. Methods This was a retrospective analysis of scrub typhus meningoencephalitis. Seven patients and seven age- and sex-matched healthy controls were included. Different DTI parameters such as apparent diffusion coefficient (ADC), fractional anisotropy (FA), relative anisotropy (RA), trace, volume ratio (VR) and geodesic anisotropy (GA) were obtained from six different regions of subcortical white matter at the level of the centrum semiovale. Intergroup significant difference was determined by one-way analysis of variance followed by Tukey’s post hoc test. Receiver operating characteristic curves were constructed to determine the accuracy of the DTI matrices. Results There was a significant decrease in FA, RA and GA as well as an increase in ADC and VR in the subcortical white matter in patients with scrub typhus meningoencephalitis compared to controls ( p < 0.001). The maximum sensitivity of the DTI parameters was 85.7%, and the maximum specificity was 81%. Conclusion There was an alteration of subcortical white-matter integrity in scrub typhus meningoencephalitis that represents the axonal degeneration, myelin breakdown and neuronal degeneration. DTI may be a useful tool to detect white-matter abnormalities in scrub typhus meningoencephalitis in clinical practice, particularly in patients with negative conventional MRI.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S128
Author(s):  
H Lemaitre ◽  
S Marenco ◽  
M Emery ◽  
T Alam ◽  
M Geramita ◽  
...  

2016 ◽  
Vol 208 (6) ◽  
pp. 585-590 ◽  
Author(s):  
Xiaodan Liu ◽  
Keita Watanabe ◽  
Shingo Kakeda ◽  
Reiji Yoshimura ◽  
Osamu Abe ◽  
...  

BackgroundHigher daytime cortisol levels because of a hyperactive hypothalamic–pituitary–adrenal axis have been reported in patients with major depressive disorder (MDD). The elevated glucocorticoids inhibit the proliferation of the oligodendrocytes that are responsible for myelinating the axons of white matter fibre tracts.AimsTo evaluate the relationship between white matter integrity and serum cortisol levels during a first depressive episode in drug-naive patients with MDD (MDD group) using a tract-based spatial statistics (TBSS) method.MethodThe MDD group (n = 29) and a healthy control group (n = 47) underwent diffusion tensor imaging (DTI) scans and an analysis was conducted using TBSS. Morning blood samples were obtained from both groups for cortisol measurement.ResultsCompared with the controls, the MDD group had significantly reduced fractional anisotropy values (P<0.05, family-wise error (FWE)-corrected) in the inferior fronto-occipital fasciculus, uncinate fasciculus and anterior thalamic radiation. The fractional anisotropy values of the inferior fronto-occipital fasciculus, uncinate fasciculus and anterior thalamic radiation had significantly negative correlations with the serum cortisol levels in the MDD group (P<0.05, FWE-corrected).ConclusionsOur findings indicate that the elevated cortisol levels in the MDD group may injure the white matter integrity in the frontal–subcortical and frontal–limbic circuits.


2021 ◽  
pp. 155005942110582
Author(s):  
Sophie A. Stewart ◽  
Laura Pimer ◽  
John D. Fisk ◽  
Benjamin Rusak ◽  
Ron A. Leslie ◽  
...  

Parkinson's disease (PD) is a neurodegenerative disorder that is typified by motor signs and symptoms but can also lead to significant cognitive impairment and dementia Parkinson's Disease Dementia (PDD). While dementia is considered a nonmotor feature of PD that typically occurs later, individuals with PD may experience mild cognitive impairment (PD-MCI) earlier in the disease course. Olfactory deficit (OD) is considered another nonmotor symptom of PD and often presents even before the motor signs and diagnosis of PD. We examined potential links among cognitive impairment, olfactory functioning, and white matter integrity of olfactory brain regions in persons with early-stage PD. Cognitive tests were used to established groups with PD-MCI and with normal cognition (PD-NC). Olfactory functioning was examined using the University of Pennsylvania Smell Identification Test (UPSIT) while the white matter integrity of the anterior olfactory structures (AOS) was examined using magnetic resonance imaging (MRI) diffusion tensor imaging (DTI) analysis. Those with PD-MCI demonstrated poorer olfactory functioning and abnormalities based on all DTI parameters in the AOS, relative to PD-NC individuals. OD and microstructural changes in the AOS of individuals with PD may serve as additional biological markers of PD-MCI.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Sussanne Reyes ◽  
Patricio Peirano ◽  
Betsy Lozoff ◽  
Cecilia Algarin

Abstract IntroductionObesity has been associated with lower white matter integrity (WMI) in limbic brain regions, including the fornix. Both early decrease of WMI in the fornix (WMIf) and midlife obesity have been related to dementia incidence with advancing age. No studies have explored early cognitive predictors of WMIf in overweight-obese (OO) adults. Aim of this study was to compare OO and normal-weight (NW) participants with respect to (a) WMIf in adulthood and (b) the relationship between cognitive performance at school-age and in adolescence with WMIf in adulthood.MethodsParticipants were part of a cohort followed since infancy who underwent magnetic resonance imaging studies in adulthood (22.3 ± 1.3 years). Diffusion tensor imaging was performed and Tract Based Spatial Statistics (TBSS) was used to obtain fractional anisotropy (FA) skeleton; increased FA relates to greater WMI. A mask for the fornix was created (JHU-ICBM DTI-81 Atlas) and then used to extract the average FA for each individual. Participants also performed neurocognitive tasks: (a) school-age (10.3 ± 1.0 years): the trail making test comprises two conditions and time difference between conditions reflects cognitive flexibility; (b) adolescence (15.6 ± 0.5 years): incentive task that test the effect of incentives (reward, loss avoidance or neutral) on inhibitory control performance (correct responses latency). In adulthood, BMI was categorized as NW (≥ 18.5 to < 25.0 kg/m2) and OO (≥ 25.0 kg/m2) groups. A t-test and univariate GLM were conducted. Analysis were adjusted by sex and age-specific BMI z-scores.ResultsParticipants were 27 NW (41% female) and 41 OO (49% female). Compared to NW, OO participants showed decreased FA in the fornix (0.585 vs. 0.618, p < 0.05), i.e. lower WMIf. Differences were apparent in the relationship between cognitive flexibility at school-age (F = 2.9, p = 0.06) and loss avoidance latency in adolescence (F = 3.5, p < 0.05) with FA in the fornix in adulthood. Increased cognitive flexibility at school-age (β = 0.335, p < 0.05) and decreased loss avoidance latency in adolescence (β = -0.581, p < 0.001) were related to higher FA in the fornix in OO adults. No relationship resulted significant in NW adults.DiscussionPerformance in neurocognitive tasks at earlier developmental stages were related with WMIf only in OO adults, group characterized by decreased WMIf. Our results provide evidence regarding specific neurocognitive tasks with predictive value for WMIf alterations. Further, they could contribute to the understanding of neural mechanisms underlying obesity and also provide insight relative to neurodegenerative risk with advancing age.SupportFondecyt 11160671 and NIH HD33487.


2018 ◽  
Author(s):  
David Moreau ◽  
Anna J. Wilson ◽  
Nicole S. McKay ◽  
Kasey Nihill ◽  
Karen E. Waldie

AbstractLearning disabilities such as dyslexia, dyscalculia and their comorbid manifestation are prevalent, affecting as much as fifteen percent of the population. Structural neuroimaging studies have indicated that these disorders can be related to differences in white matter integrity, although findings remain disparate. In this study, we used a unique design composed of individuals with dyslexia, dyscalculia, both disorders and controls, to systematically explore differences in fractional anisotropy across groups using diffusion tensor imaging. Specifically, we focused on the corona radiata and the arcuate fasciculus, two tracts associated with reading and mathematics in a number of previous studies. Using Bayesian hypothesis testing, we show that the present data favor the null model of no differences between groups for these particular tracts—a finding that seems to go against the current view but might be representative of the disparities within this field of research. Together, these findings suggest that structural differences associated with dyslexia and dyscalculia might not be as reliable as previously thought, with potential ramifications in terms of remediation.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3409
Author(s):  
Lisa M. Hortensius ◽  
Els Janson ◽  
Pauline E. van van Beek ◽  
Floris Groenendaal ◽  
Nathalie H. P. Claessens ◽  
...  

Background: Determining optimal nutritional regimens in extremely preterm infants remains challenging. This study aimed to evaluate the effect of a new nutritional regimen and individual macronutrient intake on white matter integrity and neurodevelopmental outcome. Methods: Two retrospective cohorts of extremely preterm infants (gestational age <28 weeks) were included. Cohort B (n = 79) received a new nutritional regimen, with more rapidly increased, higher protein intake compared to cohort A (n = 99). Individual protein, lipid, and caloric intakes were calculated for the first 28 postnatal days. Diffusion tensor imaging was performed at term-equivalent age, and cognitive and motor development were evaluated at 2 years corrected age (CA) (Bayley-III-NL) and 5.9 years chronological age (WPPSI-III-NL, MABC-2-NL). Results: Compared to cohort A, infants in cohort B had significantly higher protein intake (3.4 g/kg/day vs. 2.7 g/kg/day) and higher fractional anisotropy (FA) in several white matter tracts but lower motor scores at 2 years CA (mean (SD) 103 (12) vs. 109 (12)). Higher protein intake was associated with higher FA and lower motor scores at 2 years CA (B = −6.7, p = 0.001). However, motor scores at 2 years CA were still within the normal range and differences were not sustained at 5.9 years. There were no significant associations with lipid or caloric intake. Conclusion: In extremely preterm born infants, postnatal protein intake seems important for white matter development but does not necessarily improve long-term cognitive and motor development.


Sign in / Sign up

Export Citation Format

Share Document