scholarly journals Animal Models of Uveal Melanoma: Methods, Applicability, and Limitations

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Marta M. Stei ◽  
Karin U. Loeffler ◽  
Frank G. Holz ◽  
Martina C. Herwig

Animal models serve as powerful tools for investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic agents. They have facilitated rapid scientific progress in many tumor entities. However, for establishing a powerful animal model of uveal melanoma fundamental challenges remain. To date, no animal model offers specific genetic attributes as well as histologic, immunologic, and metastatic features of uveal melanoma. Syngeneic models with intraocular injection of cutaneous melanoma cells may suit best for investigating immunologic/tumor biology aspects. However, differences between cutaneous and uveal melanoma regarding genetics and metastasis remain problematic. Human xenograft models are widely used for evaluating novel therapeutics but require immunosuppression to allow tumor growth. New approaches aim to establish transgenic mouse models of spontaneous uveal melanoma which recently provided preliminary promising results. Each model provides certain benefits and may render them suitable for answering a respective scientific question. However, all existing models also exhibit relevant limitations which may have led to delayed research progress. Despite refined therapeutic options for the primary ocular tumor, patients’ prognosis has not improved since the 1970s. Basic research needs to further focus on a refinement of a potent animal model which mimics uveal melanoma specific mechanisms of progression and metastasis. This review will summarise and interpret existing animal models of uveal melanoma including recent advances in the field.

2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Liu Sun ◽  
Li Zhao ◽  
Rui-Yun Peng

AbstractWith the rapid development of terahertz technologies, basic research and applications of terahertz waves in biomedicine have attracted increasing attention. The rotation and vibrational energy levels of biomacromolecules fall in the energy range of terahertz waves; thus, terahertz waves might interact with biomacromolecules. Therefore, terahertz waves have been widely applied to explore features of the terahertz spectrum of biomacromolecules. However, the effects of terahertz waves on biomacromolecules are largely unexplored. Although some progress has been reported, there are still numerous technical barriers to clarifying the relation between terahertz waves and biomacromolecules and to realizing the accurate regulation of biological macromolecules by terahertz waves. Therefore, further investigations should be conducted in the future. In this paper, we reviewed terahertz waves and their biomedical research advantages, applications of terahertz waves on biomacromolecules and the effects of terahertz waves on biomacromolecules. These findings will provide novel ideas and methods for the research and application of terahertz waves in the biomedical field.


2013 ◽  
Vol 26 (5) ◽  
pp. 264-271 ◽  
Author(s):  
Mousumi Tania ◽  
Md. Asaduzzaman Khan ◽  
Kun Xia

ObjectiveAutism, a lifelong neuro-developmental disorder is a uniquely human condition. Animal models are not the perfect tools for the full understanding of human development and behavior, but they can be an important place to start. This review focused on the recent updates of animal model research in autism.MethodsWe have reviewed the publications over the last three decades, which are related to animal model study in autism.ResultsAnimal models are important because they allow researchers to study the underlying neurobiology in a way that is not possible in humans. Improving the availability of better animal models will help the field to increase the development of medicines that can relieve disabling symptoms. Results from the therapeutic approaches are encouraging remarkably, since some behavioral alterations could be reversed even when treatment was performed on adult mice. Finding an animal model system with similar behavioral tendencies as humans is thus vital for understanding the brain mechanisms, supporting social motivation and attention, and the manner in which these mechanisms break down in autism. The ongoing studies should therefore increase the understanding of the biological alterations associated with autism as well as the development of knowledge-based treatments therapy for those struggling with autism.ConclusionIn this review, we have presented recent advances in research based on animal models of autism, raising hope for understanding the disease biology for potential therapeutic intervention to improve the quality of life of autism individuals.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1011
Author(s):  
Thi-Quyen Nguyen ◽  
Rare Rollon ◽  
Young-Ki Choi

Influenza remains one of the most significant public health threats due to its ability to cause high morbidity and mortality worldwide. Although understanding of influenza viruses has greatly increased in recent years, shortcomings remain. Additionally, the continuous mutation of influenza viruses through genetic reassortment and selection of variants that escape host immune responses can render current influenza vaccines ineffective at controlling seasonal epidemics and potential pandemics. Thus, there is a knowledge gap in the understanding of influenza viruses and a corresponding need to develop novel universal vaccines and therapeutic treatments. Investigation of viral pathogenesis, transmission mechanisms, and efficacy of influenza vaccine candidates requires animal models that can recapitulate the disease. Furthermore, the choice of animal model for each research question is crucial in order for researchers to acquire a better knowledge of influenza viruses. Herein, we reviewed the advantages and limitations of each animal model—including mice, ferrets, guinea pigs, swine, felines, canines, and non-human primates—for elucidating influenza viral pathogenesis and transmission and for evaluating therapeutic agents and vaccine efficacy.


Pharmacology ◽  
2021 ◽  
pp. 1-13
Author(s):  
Catarina V. Jota Baptista ◽  
Ana I. Faustino-Rocha ◽  
Paula A. Oliveira

<b><i>Background:</i></b> The Nobel Prize of Physiology or Medicine (NPPM) has recognized the work of 222 scientists from different nationalities, from 1901 until 2020. From the total, 186 award researchers used animal models in their projects, and 21 were attributed to scientists and projects directly related to Pharmacology. In the most recent years, genetics is a dominant scientific area, while at the beginning of the 20th century, most of the studies were more related to anatomy, cytology, and physiology. <b><i>Summary:</i></b> Mammalian models were used in 144 NPPM projects, being rodents the most used group of species. Moreover, 92 researchers included domestic species in their work. The criteria used to choose the species, the number of animals used and the experimental protocol is always debatable and dependent on the scientific area of the study; however, the 3R’s principle can be applied to most scientific fields. Independently of the species, the animal model can be classified in different types and criteria, depending on their ecology, genetics, and mode of action. <b><i>Key-Messages:</i></b> The use of animal models in NPPM awarded projects, namely in Pharmacology, illustrates their importance, need and benefit to improve scientific knowledge and create solutions. In the future, with the contribute of technology, it might be possible to refine the use of animal models in pharmacology studies.


PEDIATRICS ◽  
1985 ◽  
Vol 76 (6) ◽  
pp. 1000-1003
Author(s):  
KENNETH I. GLASSBERG

The Section of Urology of the American Academy of Pediatrics met for three days in conjunction with the 53rd annual meeting of the Academy in Chicago. Papers and panel discussions that would be of interest to the pediatrician are summarized herein according to topic. As there has been an increasing number of basic research papers presented in recent years, the Section, this year, initiated a prize for basic research. Also new to the meeting was the awarding of the first annual Pediatric Urology Medal, which was given to Harry Spence for contributions made to the field. TESTICULAR TORSION Recent reports of unilateral testicular torsion have suggested that adverse effects may occur to the contralateral testicle, if the ischemic testicle is treated by surgical detorsion and left in place rather than removed.1-4 Three authors addressed this problem by investigating animal models. Animal Models In prepubertal rats undergoing experimentally produced testicular torsion, Rabinowitz and associates found histologic changes in the contralateral testicle. The changes in the contralateral testicle were dependent upon the duration of torsion and were significantly greater when the ischemic testicle was detorsed and left in place. The degree of histologic changes in the ischemic testicle, especially the degree of germ cell damage, was the best prediction of long-term damage to the contralateral testicle. In the animal model, these changes could be averted by removing the ischemic testicle. Although not going as far to recommend orchiectomy as the treatment of choice for all cases of torsion, Dr. Rabinowitz did suggest that a testicular biopsy in prepubertal boys with testicular torsion may be a reliable index to subsequent long-term contralateral damage if the ischemic testicle is detorsed and pexed rather than removed.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Hua-Chuan Zheng ◽  
Yasuo Takano

The incidence of lung adenocarcinoma has been remarkably increasing in recent years due to the introduction of filter cigarettes and secondary-hand smoking because the people are more exposed to higher amounts of nitrogen oxides, especially 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone(NNK), which is widely applied in animal model of lung tumors. In NNK-induced lung tumors, genetic mutation, chromosome instability, gene methylation, and activation of oncogenes have been found so as to disrupt the expression profiles of some proteins or enzymes in various cellular signal pathways. Transgenic animal with specific alteration of lung cancer-related molecules have also been introduced to clarify the molecular mechanisms of NNK in the pathogenesis and development of lung tumors. Based on these animal models, many antioxidant ingredients and antitumor chemotherapeutic agents have been proved to suppress the NNK-induced lung carcinogenesis. In the future, it is necessary to delineate the most potent biomarkers of NNK-induced lung tumorigenesis, and to develop efficient methods to fight against NNK-associated lung cancer using animal models.


2010 ◽  
Vol 30 (8) ◽  
pp. 1412-1431 ◽  
Author(s):  
David W Howells ◽  
Michelle J Porritt ◽  
Sarah SJ Rewell ◽  
Victoria O'Collins ◽  
Emily S Sena ◽  
...  

No single animal model is able to encompass all of the variables known to affect human ischemic stroke. This review highlights the major strengths and weaknesses of the most commonly used animal models of acute ischemic stroke in the context of matching model and experimental aim. Particular emphasis is placed on the relationships between outcome and underlying vascular variability, physiologic control, and use of models of comorbidity. The aim is to provide, for novice and expert alike, an overview of the key controllable determinants of experimental stroke outcome to help ensure the most effective application of animal models to translational research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liang Zhang ◽  
Shuaiyin Chen ◽  
Weiguo Zhang ◽  
Haiyan Yang ◽  
Yuefei Jin ◽  
...  

Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic since March 2020 and led to significant challenges to over 200 countries and regions all over the world. The establishment of highly pathogenic coronavirus animal model is beneficial for the study of vaccines and pathogenic mechanism of the virus. Laboratory mice, Syrian hamsters, Non-human primates and Ferrets have been used to establish animal models of emerging coronavirus infection. Different animal models can reproduce clinical infection symptoms at different levels. Appropriate animal models are of great significance for the pathogenesis of COVID-19 and the research progress related to vaccines. This review aims to introduce the current progress about experimental animal models for SARS-CoV-2, and collectively generalize critical aspects of disease manifestation in humans and increase their usefulness in research into COVID-19 pathogenesis and developing new preventions and treatments.


Sign in / Sign up

Export Citation Format

Share Document