scholarly journals Chemical Composition and Antimicrobial Potential of Palm Leaf Extracts from Babaçu (Attalea speciosa), Buriti (Mauritia flexuosa), and Macaúba (Acrocomia aculeata)

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Adriana Idalina Torcato de Oliveira ◽  
Talal Suleiman Mahmoud ◽  
Guilherme Nobre L. do Nascimento ◽  
Juliana Fonseca Moreira da Silva ◽  
Raphael Sanzio Pimenta ◽  
...  

Babaçu (A. speciosa), Buriti (M. flexuosa), and Macaúba (A. aculeata) are palm trees typical of the ecotone area between Cerrado and the Amazon rainforest. The purpose of this study was to evaluate the antimicrobial potential of the extracts prepared from the leaves of those palms as well as determine their chemical compositions. The ethanol extracts were prepared in a Soxhlet apparatus and tested by disk diffusion and agar dilution technique againstStaphylococcus aureus,Enterococcus faecalis,Escherichia coli, Pseudomonas aeruginosa,Candida albicans, andCandida parapsilosis.However, there was no significant activity at concentrations of 25, 50, and 100 mg·Ml−1. Moreover, the phytochemical analysis revealed the presence of tannins, flavonoids, catechins, steroids, triterpenes, and saponins. Gas chromatography (GC/MS) analysis also identified organic acids, such as capric (decanoic) acid, lauric (dodecanoic) acid, myristic (tetradecanoic) acid, phthalic (1,2-benzenedicarboxylic) acid, palmitic (hexadecanoic) acid, stearic (octadecanoic) acid, linoleic (9,12-octadecadienoic) acid (omega-6), linolenic (octadecatrienoic) acid (omega-3), and the terpenes citronellol and phytol. Based on the chemical composition in the palm leaf extracts, the palms have the potential to be useful in the food, cosmetic, and pharmaceutical industries.

2018 ◽  
Vol 475 (17) ◽  
pp. 2801-2817 ◽  
Author(s):  
Ilona K. Jóźwik ◽  
Martin Litzenburger ◽  
Yogan Khatri ◽  
Alexander Schifrin ◽  
Marco Girhard ◽  
...  

Oxidative biocatalytic reactions performed by cytochrome P450 enzymes (P450s) are of high interest for the chemical and pharmaceutical industries. CYP267B1 is a P450 enzyme from myxobacterium Sorangium cellulosum So ce56 displaying a broad substrate scope. In this work, a search for new substrates was performed, combined with product characterization and a structural analysis of substrate-bound complexes using X-ray crystallography and computational docking. The results demonstrate the ability of CYP267B1 to perform in-chain hydroxylations of medium-chain saturated fatty acids (decanoic acid, dodecanoic acid and tetradecanoic acid) and a regioselective hydroxylation of flavanone. The fatty acids are mono-hydroxylated at different in-chain positions, with decanoic acid displaying the highest regioselectivity towards ω-3 hydroxylation. Flavanone is preferably oxidized to 3-hydroxyflavanone. High-resolution crystal structures of CYP267B1 revealed a very spacious active site pocket, similarly to other P450s capable of converting macrocyclic compounds. The pocket becomes more constricted near to the heme and is closed off from solvent by residues of the F and G helices and the B–C loop. The crystal structure of the tetradecanoic acid-bound complex displays the fatty acid bound near to the heme, but in a nonproductive conformation. Molecular docking allowed modeling of the productive binding modes for the four investigated fatty acids and flavanone, as well as of two substrates identified in a previous study (diclofenac and ibuprofen), explaining the observed product profiles. The obtained structures of CYP267B1 thus serve as a valuable prediction tool for substrate hydroxylations by this highly versatile enzyme and will encourage future selectivity changes by rational protein engineering.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1833
Author(s):  
Rodica Beicu ◽  
Ersilia Alexa ◽  
Diana Obiștioiu ◽  
Ileana Cocan ◽  
Florin Imbrea ◽  
...  

The purpose of this study was to analyze the chemical composition and antimicrobial activity of some thymus populations collected from five different locations in Western Romania. The chemical compositions of the essential oils (EOs) were studied through GC–MS, and the biological activities were evaluated using the microdilution method. The EO yield ranged between 0.44% and 0.81%. Overall, 60 chemical compounds were identified belonging to three chemotypes: thymol (three populations), geraniol (one population) and carvacrol (one population). Thymus vulgaris L. is distinguished by a high content of thymol, while species of spontaneous flora (Th. odoratissimus and Th. pulegioides) contain, in addition to thymol, appreciable amounts of carvacrol and geraniol. The antimicrobial activity of each the five oils was tested on Staphylococcus aureus (ATCC 25923), Streptococcus pyogenes (ATCC 19615), Esherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Shigella flexneri (ATCC 12022), Salmonella typhimurium (ATCC 14028), Haemophilus influenzae type B (ATCC 10211), Candida albicans (ATCC 10231) and Candida parapsilopsis (ATCC 22019). The EOs showed biological activity on Gram-positive/Gram-negative/fungal pathogens, the most sensitive strains proving to be S. pyogenes, S. flexneri, S. typhimurium and C. parapsilopsis with an MIC starting at 2 µL EO/100 µL. The species sensitive to the action of Thymus sp. from culture or spontaneous flora are generally the same, but it should be noted that T. odoratissimus has a positive inhibition rate higher than other investigated EOs, regardless of the administered oil concentration. To date, there is no research work presenting the chemical and antimicrobial profiling of T. odoratissimus and the correlations between the antimicrobial potential and chemical composition of wild and cultivated populations of thyme (Thymus sp.) growing in Western Romania.


Author(s):  
Ourzeddine Widad ◽  
Fadel Hamza ◽  
Mechehoud Youcef ◽  
Chalchat Jean-claude ◽  
Figueredo Gilles ◽  
...  

The essential oil of the fruit of Zizyphus lotus (L.) Desf. belonging to the Rhamnaceae family, was obtained by steam distillation and analyzed by GC-FID and GC-MS. 38 components were identified corresponding to 92% of the total oil. Fatty acids represented the major fraction (78.9%), followed by hydrocarbons (10.8%) while terpenic fraction constituted only 1.1% of the oil (- and β-eudesmol). The fatty acids fraction contained 23 saturated and unsaturated compounds (67.8 and 11%, respectively) from C8 to C18. The major constituents are in decreasing order: ethyl hexadecanoate (12%), decanoic acid (11%), ethyl dodecanoate (9.4%), ethyl hexadec-9-enoate (7.9%), dodecanoic acid (6.5%), ethyl tetradecanoate (6.1%) and tetradecanoic acid (5%). Several studies described the fatty acid composition of different parts of Zizyphus species in the fixed oil. Our study is the first report devoted to the chemical composition of the essential oil of the fruit of this species. The antioxidant property of this oil was evaluated using β-carotene bleaching method.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260281
Author(s):  
Madhuri Bharathithasan ◽  
Darvin R. Ravindran ◽  
Dinesh Rajendran ◽  
Sim Ka Chun ◽  
S. A. Abbas ◽  
...  

Background There is a growing need to use green alternative larvicidal control for Aedes larvae compared to chemical insecticides. Substantial reliance on chemical insecticides caused insecticide resistance in mosquito populations. Thus, research for alternate chemical compounds from natural products is necessary to control Aedes larvae. This study explores the analysis of chemical compositions from Areca catechu nut as a potential larvicide for Aedes (Diptera: Culicidae). Methods The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus. Results The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid <n->, and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents. Conclusions Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Rajiv Ravi ◽  
Nor Shaida Husna Zulkrnin ◽  
Nurul Nadiah Rozhan ◽  
Nik Raihan Nik Yusoff ◽  
Mohd Sukhairi Mat Rasat ◽  
...  

Limited success for Aedes control program has impelled the necessities for new insecticide search. Hence, alternative plant compounds may be competent to overcome the pesticide resistance problem and to lead a chemical-free environment. Following go-green conceptions, larvicidal effects of the Azolla pinnata extracts using methanol and acetone solvent against Aedes albopictus late 3rd instar larvae were evaluated. The A. pinnata fresh plant from Kuala Krai, Kelantan, Malaysia (5° 31′ N 102° 12′ E) was used for crude extraction with Soxhlet apparatus using methanol and acetone solvents. Next, larvicidal test following WHO guidelines was tested against late 3rd instar to early 4th instar larvae of Ae. albopictus mosquitoes. Meanwhile, the chemical composition of extracts and their structures have been identified using GCMS-QP2010 Ultra (Shimadzu) fitted with Rtx-5MS capillary column (30 m × 0.25 mm inner diameter, ×0.25 μm film thickness; maximum temperature, 370°C), coupled to QP2010 Ultra (Shimadzu) MS. Results of methanol solvent showed the highest larvicidal activity against late 3rd instar to early 4th instar Ae. albopictus larvae with LC50 and LC95 values of 867 ppm and 1293 ppm at 24 hours, respectively, and 647 ppm and 972 ppm at 48 hours, respectively. Meanwhile, acetone solvent compounds were recorded with LC50 and LC95 values of 1072 ppm and 1302 ppm at 24 hours, respectively, and 904 ppm and 1126 ppm at 48 hours, respectively. Finally, the chemical composition of A. pinnata plant extracts has been characterized for 35 active compounds from methanol solvent and 37 active compounds with acetone solvent. In conclusion, A. pinnata plant bioactive molecules are efficient and could be developed as an eco-friendly, “go-green” approach for mosquitoes' larvicidal control programs. Thus, our study suggests that future research can be conducted on A. pinnata bioactive ingredients against Ae. albopictus larvae in small-scale field trials as botanical insecticide for environmentally friendly approach.


2019 ◽  
Vol 9 (4) ◽  
pp. 268-279
Author(s):  
Mohamed E.I. Badawy ◽  
Ibrahim E.A. Kherallah ◽  
Ahmed S.O. Mohareb ◽  
Mohamed. Z.M. Salem ◽  
Hameda A. Yousef

Background:Plant extracts are important products in the world and have been widely used for isolation of important biologically active products. Because of their significant environmental impact, extensive research has been explored to determine the antimicrobial activity of plant extracts.Methods:Acetone extracts of the bark and leaf of Cupressus sempervirens and Juniperus phoenicea, collected from three different altitudes (125, 391, and 851 m high of sea level) at Al- Jabel Al-Akhdar area, Libya were obtained and analyzed by GC/MS. The antimicrobial activity of the extracts was further evaluated against plant bacteria Rhizobium radiobacter, Erwinia carotovora, Rhodococcus fascians and Ralstonia solanacearum and fungus Botrytis cinerea.Results:The impact of the altitude from the sea level on the quantity and chemical constituents of the extracts was investigated. The yield was largely dependent on tree species and the highest yield (6.50%) was obtained with C. sempervirens L bark of altitude III (851 m of the sea level), while the lowest (1.17%) was obtained with the leaf extract of C. sempervirens L from altitude I (125 m). The chemical composition analyzed by GC/MS confirmed that the leaf extracts of C. sempervirens and J. phoenicea contained a complex mixture of monoterpene hydrocarbons, sesquiterpenes, diterpenes, diterpenoids, terpenophenolic, steroids and phthalates. However, the bark extracts of both trees contained a mixture of sesquiterpenes, diterpenes, diterpenoids, terpenophenolics, phthalates, retinol and steroids. These constituents revealed some variability among the extracts displaying the highest interesting chemotype of totarol (terpenophenolic) in all extracts (14.63-78.19% of the total extract). The extracts displayed a noteworthy antifungal potency with varying degrees of inhibition of growth with EC50 values ranged from 78.50 to 206.90 mg/L. The extracts obtained from the leaves of C. sempervirens showed that the highest inhibitory activity was obtained with the extract of altitude II (391 m) with MIC 565, 510, 380 and 710 mg/L against E. carotovora, R. fascians, and R. radiobacter and R. solanacearum, respectively.Conclusion:Based on antimicrobial activity, raw plant extracts can be a cost-effective way to protect crops from microbial pathogens. Because plant extracts contain several antimicrobial compounds, the development of resistant pathogens can be delayed.


e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Iván García Romero ◽  
Harald Pasch

AbstractThe development of high-throughput liquid chromatographic techniques for the analysis of styrene-butyl acrylate (SBA) copolymers is discussed. The analysis time in size-exclusion chromatography (SEC) can be reduced to about 3 min per sample when high-throughput SEC columns and high flow rates are used. In gradient HPLC, small columns with improved separation efficiencies can be applied. The time requirements can be decreased to less than 2 min per sample. Using the high-throughput HPLC technique, the chemical composition distribution of high-conversion SBA copolymers can be analyzed in a fast and efficient way. The calibration of HPLC separation is conducted by coupling the HPLC system with FTIR through the LC-transform interface. A comparison of the chemical compositions of the copolymers obtained by 1H NMR, off-line FTIR and coupled HPLCFTIR verifies the accuracy of the high-throughput copolymer analysis approach.


2011 ◽  
Vol 695 ◽  
pp. 141-144
Author(s):  
Eiji Watanabe ◽  
Kaori Nishizawa ◽  
Masaki Maeda

Relationship of the adsorption behaviors of phosphorus with several natural materials and artificial HAS-clay with various chemical compositions was investigated. The amounts of phosphorus adsorbed by them were closely related with the contents of aluminum in the material. It was found that the higher the aluminum contents of material, larger the amount of phosphorus were adsorbed.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2949
Author(s):  
Juan I. Burneo ◽  
Ángel Benítez ◽  
James Calva ◽  
Pablo Velastegui ◽  
Vladimir Morocho

Chemical compositions of plants are affected by the initial nutrient contents in the soil and climatic conditions; thus, we analyzed for the first time the effects of soil and leaf nutrients on the compositions of the essential oils (EOs) of Siparuna muricata in four different localities in Ecuador. EOs were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) and a gas chromatography/flame ionization detector (GC/FID). Enantiomeric distribution by GC/MS was determined, modifying the enantiomeric separation of β-pinene, limonene, δ-elemene, β-bourbonene, cis-cadina-1 (6), 4-diene and atractylone. A total of 44 compounds were identified. The most representative for L1 were guaiol, atractylone and 4-diene; for L2, cis-cadina-1(6),4-diene and myrcene; for L3, atractylone, myrcene and germacrene B; and finally, L4 germacrene B, myrcene and cis-cadina-1(6),4-diene. Correlations between soil- leaf chemical elements such as Al, Ca, Fe, Mg, Mn, N and Si in the different localities were significant with chemical composition of the essential oil of Siparuna muricata; however, correlations between soil and leaf K, P, and Na were not significant. Cluster and NMDS analysis showed high dissimilarity values of secondary metabolites between four localities related with changes in soil- leaf nutrients. Thus, the SIMPER routine revealed that not all secondary metabolites contribute equally to establishing the differences in the four localities, and the largest contributions are due to differences in guaiol, cis-cadina-1(6),4-diene, atractylone and germacrene. Our investigation showed for the first time the influences of altitude and soil- leaf chemical elements in the chemical composition of the EOs of S. muricata.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Julija Pauraite ◽  
Kristina Plauškaitė ◽  
Vadimas Dudoitis ◽  
Vidmantas Ulevicius

In situ investigation results of aerosol optical properties (absorption and scattering) and chemical composition at an urban background site in Lithuania (Vilnius) are presented. Investigation was performed in May-June 2017 using an aerosol chemical speciation monitor (ACSM), a 7-wavelength Aethalometer and a 3-wavelength integrating Nephelometer. A positive matrix factorisation (PMF) was used for the organic aerosol mass spectra analysis to characterise the sources of ambient organic aerosol (OA). Five OA factors were identified: hydrocarbon-like OA (HOA), biomass-burning OA (BBOA), more and less oxygenated OA (LVOOA and SVOOA, respectively), and local hydrocarbon-like OA (LOA). The average absorption (at 470 nm) and scattering (at 450 nm) coefficients during the entire measurement campaign were 16.59 Mm−1 (standard deviation (SD) = 17.23 Mm−1) and 29.83 Mm−1 (SD = 20.45 Mm−1), respectively. Furthermore, the absorption and scattering Angström exponents (AAE and SAE, respectively) and single-scattering albedo (SSA) were calculated. The average AAE value at 470/660 nm was 0.97 (SD = 0.16) indicating traffic-related black carbon (BCtr) dominance. The average value of SAE (at 450/700 nm) was 1.93 (SD = 0.32) and could be determined by the submicron particle (PM1) dominance versus the supermicron ones (PM > 1 µm). The average value of SSA was 0.62 (SD = 0.13). Several aerosol types showed specific segregation in the SAE versus SSA plot, which underlines different optical properties due to various chemical compositions.


Sign in / Sign up

Export Citation Format

Share Document