scholarly journals Extracellular Vesicle-Encapsulated miR-183-5p from Rhynchophylline-Treated H9c2 Cells Protect against Methamphetamine-Induced Dependence in Mouse Brain by Targeting NRG1

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuting Zhou ◽  
Shilin Xiao ◽  
Chan Li ◽  
Zhijie Chen ◽  
Chen Zhu ◽  
...  

Methamphetamine (Meth) is a highly addictive substance and the largest drug threat across the globe. There is evidence to indicate that Meth use has serious damage on central nervous system (CNS) and heart in several animal and human studies. However, the connection in the process of Meth addiction between these two systems has not been determined. Emerging data suggest that extracellular vesicles (EVs) carrying behavior-altering microRNA (miRNAs) play a crucial role in cell communication between CNS and peripheral system. Rhynchophylline (Rhy), an antiaddictive alkaloid, was used to protect the brain and heart from Meth-induced damage, which has caught our attention. Here, we used Meth-dependent conditioned place preference (CPP) animal model and cell model to verify the protective effect of Rhy-treated EVs. Further, small RNA sequencing analysis, qPCR, dual-luciferase reporter assay, and transfection test were used to identify the key EVs-encapsulated miRNAs, isolated from cultured H9c2 cells with different treatments, involved in the therapeutic effect and the underlying mechanisms of Rhy. The results demonstrate that Rhy-treated EVs exert protective effects against Meth dependence through the pathway of miR-183-5p-neuregulin-1 (NRG1). Our collective findings provide novel insights into the roles of EVs miRNAs in Meth addiction and support their potential application in the development of novel therapeutic approaches.

2022 ◽  
Vol 12 (2) ◽  
pp. 306-315
Author(s):  
Jie Song ◽  
Cheng Chen ◽  
Hui Zhang

Osteoarthritis (OA) is a chronic and inflammatory disease, leading to pain or even disability in severe cases. LncRNA PCGEM1 (PCGEM1) is reported to be dysregulated, serving as critical regulators in various human diseases, including OA. However, the biological role of PCGEM1 and its underlying mechanisms during OA remained unclear. In the present study, CHON-001 cells were exposed to interleukin (IL)-1β to construct the OA cell model. Expression of PCGEM1 and miR-152-3p in cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Corresponding commercial kits were used to measure the expressions of lactate dehydrogenase (LDH), inter-leukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Protein levels of apoptosis-related proteins, cleaved-Caspase3 and Caspase3, were detected by Western blotting. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) tetrazolium (MTT) and flow cytometry assays were utilized for the determination of cell proliferation and apoptosis. The association between PCGEN1 and miR-152-3p was confirmed by a dual-luciferase reporter assay. From the results, PCGEM1 expression was significantly increased while miR-152-3p was inhibited in CHON-001 cells after IL-1β treatment. In addition, silencing of PCGEM1 could promote proliferation, inhibit the apoptosis, suppress LDH level and alleviate inflammation response caused by IL-1β in CHON-001 cells by sponging miR-152-3p. In a word, PCGEM1 down-regulation suppressed OA progression by the regulation of miR-152-3p expression, functioning as a potential therapeutic target for OA clinical treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Agnes S. Meidert ◽  
Stefanie Hermann ◽  
Florian Brandes ◽  
Benedikt Kirchner ◽  
Dominik Buschmann ◽  
...  

BackgroundExtracellular vesicles (EVs) are mediators of cell-to-cell communication in inflammatory lung diseases. They function as carriers for miRNAs which regulate mRNA transcripts and signaling pathways after uptake into recipient cells. We investigated whether miRNAs associated with circulating EVs regulate immunologic processes in COVID-19.MethodsWe prospectively studied 20 symptomatic patients with COVID-19 pneumonia, 20 mechanically ventilated patients with severe COVID-19 (severe acute respiratory corona virus-2 syndrome, ARDS) and 20 healthy controls. EVs were isolated by precipitation, total RNA was extracted, profiled by small RNA sequencing and evaluated by differential gene expression analysis (DGE). Differentially regulated miRNAs between groups were bioinformatically analyzed, mRNA target transcripts identified and signaling networks constructed, thereby comparing COVID-19 pneumonia to the healthy state and pneumonia to severe COVID-19 ARDS.ResultsDGE revealed 43 significantly and differentially expressed miRNAs (25 downregulated) in COVID-19 pneumonia when compared to controls, and 20 miRNAs (15 downregulated) in COVID-19 ARDS patients in comparison to those with COVID-19 pneumonia. Network analysis for comparison of COVID-19 pneumonia to healthy controls showed upregulated miR-3168 (log2FC=2.28, padjusted<0.001), among others, targeting interleukin-6 (IL6) (25.1, 15.2 - 88.2 pg/ml in COVID-19 pneumonia) and OR52N2, an olfactory smell receptor in the nasal epithelium. In contrast, miR-3168 was significantly downregulated in COVID-19 ARDS (log2FC=-2.13, padjusted=0.003) and targeted interleukin-8 (CXCL8) in a completely activated network. Toll-like receptor 4 (TLR4) was inhibited in COVID-19 pneumonia by miR-146a-5p and upregulated in ARDS by let-7e-5p.ConclusionEV-derived miRNAs might have important regulative functions in the pathophysiology of COVID-19: CXCL8 regulates neutrophil recruitment into the lung causing epithelial damage whereas activated TLR4, to which SARS-CoV-2 spike protein binds strongly, increases cell surface ACE2 expression and destroys type II alveolar cells that secrete pulmonary surfactants; both resulting in pulmonary-capillary leakage and ARDS. These miRNAs may serve as biomarkers or as possible therapeutic targets.


2020 ◽  
Vol 39 (12) ◽  
pp. 1671-1680
Author(s):  
R Ci ◽  
K Zhang ◽  
A Zhu ◽  
W Zang

The present study aims to investigate the protective effects of Dendrobine and its underlying mechanisms on liver injury induced by isoniazid (INH) and rifampicin (RIF). A mouse model of liver injury was induced by intragastrically administration of 100 mg/kg INH and 100 mg/kg RIF for 14 days. The mice were intragastrically administrated with Dendrobine (50, 100, and 200 mg/kg) before the administration of INH and RIF. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. Oxidative stress markers including glutathione, superoxide dismutase, and malondialdehyde in the liver were measured and liver histopathological examinations were performed. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were applied to determine the mRNA and protein expressions, respectively. Luciferase reporter assay was used to evaluate the interactions between miR-295-5p and CYP1A2. Dendrobine significantly decreased serum ALT and AST and inhibited the liver index and ameliorated the liver histological changes induced by INH and RIF. Besides, Dendrobine also regulated oxidative stress status in the liver by the regulation of CYP1A2. Moreover, mmu-miR-295-5p was identified to target CYP1A2 and to regulate the expression of CYP1A2. In summary, Dendrobine ameliorated INH and RIF induced mouse liver injury by miR-295-5p-mediated CYP1A2 expression.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Jia-Qing Zhang ◽  
Xian-Wei Wang ◽  
Jun-Feng Chen ◽  
Qiao-Ling Ren ◽  
Jing Wang ◽  
...  

Oxidative stress is a causal factor and key promoter of all kinds of reproductive disorders related to granulosa cell (GC) apoptosis that acts by dysregulating the expression of related genes. Various studies have suggested that grape seed procyanidin B2 (GSPB2) may protect GCs from oxidative injury, though the underlying mechanisms are not fully understood. Therefore, whether the beneficial effects of GSPB2 are associated with microRNAs, which have been suggested to play a critical role in GC apoptosis by regulating the expression of protein-coding genes, was investigated in this study. The results showed that GSPB2 treatment protected GCs from a H2O2-induced apoptosis, as detected by an MTT assay and TUNEL staining, and increased let-7a expression in GCs. Furthermore, let-7a overexpression markedly increased cell viability and inhibited H2O2-induced GC apoptosis. Furthermore, the overexpression of let-7a reduced the upregulation of Fas expression in H2O2-treated GCs at the mRNA and protein levels. Dual-luciferase reporter assay results indicated that let-7a directly targets the Fas 3′-UTR. Furthermore, the overexpression of let-7a enhanced the protective effects of GSPB2 against GC apoptosis induced by H2O2. These results indicate that GSPB2 inhibits H2O2-induced apoptosis of GCs, possibly through the upregulation of let-7a.


2021 ◽  
Author(s):  
Shu Jia ◽  
Guowu Chen ◽  
Yanhu Liang ◽  
Xiao Liang ◽  
Chun yang Meng

Neuropathic pain (NP) is a chronic pain directly caused by injury or disease of the somatosensory nervous system. Previous studies suggest that GTP cyclohydrolase I (GCH1) may play a pivotal role in microglial activation, which has been shown to be essential for NP. However, its underlying mechanisms in microglial activation remain unclear. A wide range of microRNAs (miRNAs) have been found to be involved in microglial activation-induced NP. To identify the miRNAs regulated by GCH1 and predict their functions in the progression of microglial activation, we analyzed the miRNA expression profiles of GCH1-knockdown (KD) BV2 microglial cells. Small RNA sequencing analysis revealed 13 differentially expressed (DE) miRNAs in GCH1-KD cells. The target genes of DE miRNAs mainly participate in PI3K-Akt signaling pathway, peroxisome and ferroptosis. The miRNA-mRNA regulatory network analysis showed that GCH1, MAP4K5 and YWHAB acted as hub genes. qRT-PCR results further verified the expression levels of mmu-miR-1a-3p, mmu-miR-133a-3p, mmu-miR-7a-5p and mmu-miR-10a-5p in GCH1-KD cells, which were consistent with the sequencing data. In addition, our data indicated that overexpression of mmu-miR-133a-3p alleviated the pro-inflammatory cytokines IL-1β and IL-6 production induced by lipopolysaccharide (LPS), indicating that mmu-miR-133a-3p has a negative effect on microglial activation. Taken together, our findings suggest that many miRNAs regulated by GCH1 may be involved in microglial activation, which may provide new potential targets for GCH1 in the pathogenesis of NP.


2021 ◽  
Author(s):  
Huimin Lu ◽  
Rui Guo ◽  
Yunjin Zhang ◽  
Shenghan Su ◽  
Qingrui Zhao ◽  
...  

Long-term consumption of a high-fat diet increases the circulating concentration of stearic acid (SA), which has a potent toxic effect on β-cells, but the underlying molecular mechanisms of this action have not been fully elucidated. Here, we evaluated the role of lncRNA TCONS_00077866 (lnc866) in SA-induced β<i>-</i>cell inflammation. lnc866 was selected for study because lncRNA high-throughput sequencing analysis demonstrated it to have the largest fold-difference in expression of five lncRNAs that were affected by SA treatment. Knockdown of lnc866 by virus-mediated shRNA expression in mice or by Smart Silencer in mouse pancreatic β-TC6 cells significantly inhibited the SA-induced reduction in insulin secretion and β-cell inflammation. According to lncRNA-microRNA (miRNAs)-mRNA co-expression network analysis and luciferase reporter assays, lnc866 directly bound to miR-297b-5p, thereby preventing it from reducing the expression of its target serum amyloid A3 (SAA3). Furthermore, overexpression of miR-297b-5p or inhibition of SAA3 also had marked protective effects against the deleterious effects of SA in β-TC6 cells and mouse islets. In conclusion, lnc866 silencing ameliorates SA-induced β<i>-</i>cell inflammation by targeting the miR-297b-5p/SAA3 axis. lnc866 inhibition may represent a new strategy to protect β-cells against the effects of SA during the development of type 2 diabetes.


2021 ◽  
Author(s):  
Huimin Lu ◽  
Rui Guo ◽  
Yunjin Zhang ◽  
Shenghan Su ◽  
Qingrui Zhao ◽  
...  

Long-term consumption of a high-fat diet increases the circulating concentration of stearic acid (SA), which has a potent toxic effect on β-cells, but the underlying molecular mechanisms of this action have not been fully elucidated. Here, we evaluated the role of lncRNA TCONS_00077866 (lnc866) in SA-induced β<i>-</i>cell inflammation. lnc866 was selected for study because lncRNA high-throughput sequencing analysis demonstrated it to have the largest fold-difference in expression of five lncRNAs that were affected by SA treatment. Knockdown of lnc866 by virus-mediated shRNA expression in mice or by Smart Silencer in mouse pancreatic β-TC6 cells significantly inhibited the SA-induced reduction in insulin secretion and β-cell inflammation. According to lncRNA-microRNA (miRNAs)-mRNA co-expression network analysis and luciferase reporter assays, lnc866 directly bound to miR-297b-5p, thereby preventing it from reducing the expression of its target serum amyloid A3 (SAA3). Furthermore, overexpression of miR-297b-5p or inhibition of SAA3 also had marked protective effects against the deleterious effects of SA in β-TC6 cells and mouse islets. In conclusion, lnc866 silencing ameliorates SA-induced β<i>-</i>cell inflammation by targeting the miR-297b-5p/SAA3 axis. lnc866 inhibition may represent a new strategy to protect β-cells against the effects of SA during the development of type 2 diabetes.


2021 ◽  
Author(s):  
Huimin Lu ◽  
Rui Guo ◽  
Yunjin Zhang ◽  
Shenghan Su ◽  
Qingrui Zhao ◽  
...  

Long-term consumption of a high-fat diet increases the circulating concentration of stearic acid (SA), which has a potent toxic effect on β-cells, but the underlying molecular mechanisms of this action have not been fully elucidated. Here, we evaluated the role of lncRNA TCONS_00077866 (lnc866) in SA-induced β<i>-</i>cell inflammation. lnc866 was selected for study because lncRNA high-throughput sequencing analysis demonstrated it to have the largest fold-difference in expression of five lncRNAs that were affected by SA treatment. Knockdown of lnc866 by virus-mediated shRNA expression in mice or by Smart Silencer in mouse pancreatic β-TC6 cells significantly inhibited the SA-induced reduction in insulin secretion and β-cell inflammation. According to lncRNA-microRNA (miRNAs)-mRNA co-expression network analysis and luciferase reporter assays, lnc866 directly bound to miR-297b-5p, thereby preventing it from reducing the expression of its target serum amyloid A3 (SAA3). Furthermore, overexpression of miR-297b-5p or inhibition of SAA3 also had marked protective effects against the deleterious effects of SA in β-TC6 cells and mouse islets. In conclusion, lnc866 silencing ameliorates SA-induced β<i>-</i>cell inflammation by targeting the miR-297b-5p/SAA3 axis. lnc866 inhibition may represent a new strategy to protect β-cells against the effects of SA during the development of type 2 diabetes.


2022 ◽  
Author(s):  
Shiwei Xiao ◽  
Yigang Zuo ◽  
Yanan Li ◽  
Yinglong Huang ◽  
Shi Fu ◽  
...  

Abstract BackgroundBladder cancer (BC) is the most common genitourinary malignancy worldwide, and its aetiology and pathogenesis remain unclear. Long noncoding RNAs can play vital roles in gene expression and diverse biological processes, especially in cancers. Accumulating evidence has shown that HAGLROS, a novel lncRNA, is closely related to the occurrence and progression of various cancers. However, the biological functions and underlying mechanisms of HAGLROS in BC remain unknown.MethodsThe relative expression of HAGLROS in BC was determined by bioinformatics analysis, transcriptome sequencing analysis and qRT–PCR. Gain- or loss-of-function assays were performed to study the biological roles of HAGLROS in BC. A CCK-8 assay was used to detect BC cell proliferation. BC cell invasion and migration were investigated by wound healing and Transwell assays. The cell cycle was analysed by flow cytometry assay. Western blot analysis and immunohistochemistry were performed to evaluate SPRR1B expression. The differential expression of candidate genes and their relationships were evaluated in data retrieved from the starBase database, the GEIPIA database, the Lnc2Cancer database and the LncBase database. FISH assays, subcellular fractionation assays and luciferase reporter assays were performed to explore the underlying molecular mechanisms of HAGLROS.ResultsHAGLROS expression is significantly upregulated in BC tissues and cells, and increasing HAGLROS expression was related to high pathologic grade. HAGLROS enhances the proliferation, migration and invasion of BC. Furthermore, SPRR1B is obviously upregulated and miR-330-5p is significantly downregulated in BC. Mechanistically, we found that HAGLROS is mainly located in the cytoplasm and positively regulates SPRR1B expression by sponging miR-330-5p, playing an oncogenic role in BC pathogenesis.ConclusionsThe present study demonstrates that HAGLROS is significantly overexpressed and plays an oncogenic role by regulating the miR-330-5p/SPRR1B axis in BC. HAGLROS may serve as a potential biomarker for the diagnosis and treatment of BC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ping Wang ◽  
Haitao Zhang ◽  
Weiqing Zhao ◽  
Nini Dai

Abstract Purpose Long non-coding RNAs (lncRNAs) play important roles in the development of pneumonia. We aimed to explore the role of the lncRNA KCNQ1OT1 in pneumonia and its underlying mechanisms. Methods The expression of KCNQ1OT1, FOXM1, and miR-370-3p was detected in the serum of 24 children with pneumonia and in 24 healthy controls. Normal human embryonic lung-derived diploid fibroblasts (WI-38 cells) were stimulated with LPS (10 μg/mL) to simulate the cellular model of pneumonia, and cell viability, apoptosis, and inflammation were analysed. Dual luciferase reporter and/or RNA binding protein immunoprecipitation assays were performed to test the relationship between miR-370-3p and KCNQ1OT1/FOXM1. Mice were intratracheally administered LPS (5 mg/kg) to induce an in vivo model of pneumonia, and pathological injury and inflammation were analysed. Results The expression of KCNQ1OT1 and FOXM1 was up-regulated, and miR-370-3p was down-regulated in the serum of children with pneumonia, LPS-treated WI-38 cells, and in lung tissues of LPS-treated mice. Silencing of KCNQ1OT1 or overexpression of miR-370-3p suppressed cell apoptosis and inflammation and facilitated cell viability in LPS-treated WI-38 cells. KCNQ1OT1 directly targets miR-370-3p and negatively regulates its expression. FOXM1 was targeted by miR-370-3p and negatively modulated by miR-370-3p. In addition, silencing of KCNQ1OT1 mitigated LPS-induced lung injury and inflammation in mice. The protective effects of KCNQ1OT1 silencing in LPS-treated WI-38 cells and mice were reversed by silencing of miR-370-3p or overexpression of FOXM1. Conclusion Silencing of KCNQ1OT1 alleviates LPS-induced lung injury by regulating the miR-370-3p/FOXM1 axis in pneumonia.


Sign in / Sign up

Export Citation Format

Share Document