scholarly journals Prevention of Postsurgical Abdominal Adhesion Using Electrospun TPU Nanofibers in Rat Model

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ahmad Gholami ◽  
Homeira Emad Abdoluosefi ◽  
Elham Riazimontazer ◽  
Negar Azarpira ◽  
Mohamadali Behnam ◽  
...  

Intra-abdominal adhesions following surgery are a challenging problem in surgical practice. This study fabricated different thermoplastic polyurethane (TPU) nanofibers with different average diameters using the electrospinning method. The conditions were evaluated by scanning electron microscopy (SEM), atomic force microscope (AFM), and Fourier transform infrared spectrometer (FTIR) analysis. A static tensile test was applied using a strength testing device to assess the mechanical properties of the electrospun scaffolds. By changing the effective electrospinning parameters, the best quality of nanofibers could be achieved with the lowest bead numbers. The electrospun nanofibers were evaluated in vivo using a rat cecal abrasion model. The macroscopic evaluation and the microscopic study, including the degree of adhesion and inflammation, were investigated after three and five weeks. The resultant electrospun TPU nanofibers had diameters ranging from about 200 to 1000 nm. The diameters and morphology of the nanofibers were significantly affected by the concentration of polymer. Uniform TPU nanofibers without beads could be prepared by electrospinning through reasonable control of the process concentration. These nanofibers’ biodegradability and antibacterial properties were investigated by weight loss measurement and microdilution methods, respectively. The purpose of this study was to provide electrospun nanofibers having biodegradability and antibacterial properties that prevent any adhesions or inflammation after pelvic and abdominal surgeries. The in vivo experiments revealed that electrospun TPU nanofibers reduced the degree of abdominal adhesions. The histopathological study confirmed only a small extent of inflammatory cell infiltration in the 8% and 10% TPU. Conclusively, nanofibers containing 8% TPU significantly decreased the incidence and severity of postsurgical adhesions, and it is expected to be used in clinical applications in the future.

2019 ◽  
pp. 96-104
Author(s):  
N. Hrynchuk ◽  
N. Vrynchanu

The emergence and spread of antibiotic-resistant strains of microorganisms reduces the effectiveness of antibiotic therapy and requires finding solutions to problems, one of which is the study of antimicrobial properties in drugs of various pharmacological groups. The purpose of the work was to summarize the data on the antibacterial activity of thioridazine and its derivatives to determine the feasibility and prospects of creating new antibacterial drugs on their basis. The paper presents literature data on the effects of thioridazine on the causative agent of tuberculosis, antistaphylococcal activity, susceptibility of plasmodium and trypanosoma. The antibacterial activity of the drug was established within in vitro studies with the determination of MIC towards gram-positive and gram-negative microorganisms, ex vivo using macrophage lines, as well as within in vivo experiments on mice. It is established that the neuroleptic thioridazine is characterized by pronounced anti-tuberculosis activity, the mechanism of action is associated with the impact on the cell membrane of M. tuberculosis, inactivation by calmodulin and inhibition of specific NADH-dehydrogenase type II. The literature data indicate that thioridazine is able to increase the activity of isoniazid against the strains of mycobacteria that are susceptible and resistant to its action. It has been established that resistance to thioridazine in antibiotic-resistant M. tuberculosis strains is not formed. The drug is characterized by its ability to inhibit the growth and reproduction of both methicylin-sensitive (MSSA) and methicilin-resistant (MRSA) strains of Staphylococcus aureus, which has been proven within in vitro experiments. The effectiveness of thioridazine has been proven within in vivo experiments in case of skin infection and sepsis caused by S. aureus. Antimicrobial effect of the drug is also observed towards to plasmodium (P. falciparum) and trypanosomes (Trypanosoma spp.). Currently, the synthesis of thioridazine derivatives is carried out to identify compounds with a pronounced antibacterial effect. Some of the first synthesized compounds are not inferior or superior to thioridazine by the inhibitory effect. Thus, these data suggest that drugs of different pharmacological groups, including drugs that affect the nervous system - thioridazine and its derivatives, can be a source of replenishment of the arsenal of antimicrobial drugs to control such threatening infections as tuberculosis and diseases caused by polyresistant strains of microorganisms.


2021 ◽  
Vol 21 (2) ◽  
pp. 1293-1299
Author(s):  
Bo Yang ◽  
Fang Zhang ◽  
Weili Yuan ◽  
Li Du ◽  
Xuejun Jiang

Cancer is a serious threat to human health and longevity, and is an important cause of disease death. At present, cancer is mainly treated by surgery, radiotherapy, chemotherapy, etc. The existing various methods of treating tumors have their limitations. Although there are immune, genetic and other treatment methods, they are still immature. Therefore, tumor-targeted drug delivery systems have attracted more and more attention in cancer treatment. Targeted nano-drugs are selectively targeted to the tumor surface to achieve targeted drug delivery. New nano-drugs have created new hotspots in medical research. It could be a new strategy for treating cancer. Carboxymethyl chitosan (CMC) is formed by the carboxylation of chitosan. It has good water solubility and biodegradability, biocompatibility and antibacterial properties, so CMC is the best choice as a nanomaterial. Isorhamnetin (Iso) is an important anticancer drug. This article uses nanomedicine technology to construct CMC as a carrier, Iso as an antitumor drug, and using polydopamine (PDA) to modify the surface of the particles. Through in vitro and in vivo experiments, the Iso/CMC-PDA nanosphere Targeting and Growth Inhibition of Cervical Cancer Cells.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 182 ◽  
Author(s):  
Ye ◽  
Kuang ◽  
You ◽  
Morsi ◽  
Mo

Electrospinning technologies have been applied in the field of tissue engineering as materials, with nanoscale-structures and high porosity, can be easily prepared via this method to bio-mimic the natural extracellular matrix (ECM). Tissue engineering aims to fabricate functional biomaterials for the repairment and regeneration of defective tissue. In addition to the structural simulation for accelerating the repair process and achieving a high-quality regeneration, the combination of biomaterials and bioactive molecules is required for an ideal tissue-engineering scaffold. Due to the diversity in materials and method selection for electrospinning, a great flexibility in drug delivery systems can be achieved. Various drugs including antibiotic agents, vitamins, peptides, and proteins can be incorporated into electrospun scaffolds using different electrospinning techniques and drug-loading methods. This is a review of recent research on electrospun nanofibrous scaffolds for tissue-engineering applications, the development of preparation methods, and the delivery of various bioactive molecules. These studies are based on the fabrication of electrospun biomaterials for the repair of blood vessels, nerve tissues, cartilage, bone defects, and the treatment of aneurysms and skin wounds, as well as their applications related to oral mucosa and dental fields. In these studies, due to the optimal selection of drugs and loading methods based on electrospinning, in vitro and in vivo experiments demonstrated that these scaffolds exhibited desirable effects for the repair and treatment of damaged tissue and, thus, have excellent potential for clinical application.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1191
Author(s):  
Shuang Tong ◽  
Xu Sun ◽  
Anhua Wu ◽  
Shu Guo ◽  
Hangzhou Zhang

The antibacterial properties of titanium make it useful for clinical applications. Hydroxyapatite (HA) is widely utilized as a coating on orthopedic implants to improve osteointegration. Titanium oxide nanotubes (TNT) are recognized as a promising solution for local antibiotic therapy in bone implants. It is demonstrated that the utilization of HA-coated titanium can improve the biocompatibility of bone implants. This research aims to examine the antibacterial properties and biocompatibility of the TiO2 nanotubes by loading HA and gentamicin. In vitro testing, the characterization of drug release, cell adhesion and proliferation, bacteria culture, and antibacterial tests were conducted. During the in vivo experiments, Staphylococcus aureus was implanted into the femur of rats. The animals were sacrificed at four weeks followed by microbiological and clinical assessments on the bone, which were conducted by removing the implants followed by agar plating. The in vitro cell incubation demonstrated that the TiO2 nanotubes loaded with hydroxyapatite and gentamicin had better cellular compatibility compared to Cp–Ti. In addition, in vitro elution testing showed that gentamicin was released from the hydroxyapatite/TiO2 nanotubes for as long as 22 days. The release time was much longer than the TNT loaded with gentamicin at only 6 h. All animals in the gentamicin/HA/TNT group were free of infection compared to those in the Cp–Ti, TNT, and HA/gentamicin/TNT groups. There was a considerable reduction in the rates of infection among the rats with gentamicin-HA-TNT coatings compared to standard titanium. These results indicated that the co-precipitation of gentamicin and HA loading using the TNT method provided a novel prophylactic method against prosthetic infections and other biomedical applications.


2020 ◽  
Vol 35 (4-5) ◽  
pp. 314-327
Author(s):  
Kun Wu ◽  
Dan Zhao ◽  
Huifei Cui

The wound dressing can temporarily replace the skin and play a protective role in the process of wound healing, preventing wound infection and inflammation, and providing a favorable environment for wound healing. In this study, a mixture of collagen and chitosan was lyophilized to be the host material of the sponge. This sponge was soaked into 1-ethyl-(dimethylaminopropyl) carbodiimide/N-hydroxy sulfosuccinimide cross-linking solution containing heparin and experienced secondary lyophilization to prepare the heparinized sponge (CT-CL/Hp). The surface morphology and structural characterization of the sponge was characterized by scanning electron microscope and Fourier transform infrared spectrometer, respectively. Relatively favorable water absorption capability were observed by measuring the physical properties. Satisfactory antibacterial properties against various bacteria and microbial isolation performance were observed by the antibacterial effect analysis in vitro. The sustained-release property of heparin from the sponges was measured using Alcian Blue assay. Experiments in vitro and in vivo showed that the sponges had satisfactory biocompatibility and lower sensitization. Moreover, the effect of sponge on early stages of wound healing was evaluated by guinea pigs wound healing models. Analysis of wound healing rates and histological examination showed satisfactory results. CT-CL/Hp enhanced expression of growth factors, particularly VEGF and EGF at day 7. These results demonstrated that CT-CL/Hp–treated sponges benefit to wound skin healing and regeneration.


2020 ◽  
Vol 2 (2) ◽  
pp. 61-68
Author(s):  
Agnina Listya Anggraini ◽  
Ratih Dewi Dwiyanti ◽  
Anny Thuraidah

Infection is a disease caused by the presence of pathogenic microbes, including Staphylococcus aureus and Escherichia coli. Garlic (Allium sativum L.) has chemical contents such as allicin, alkaloids, flavonoids, saponins, tannins, and steroids, which can function as an antibacterial against Staphylococcus aureus and Escherichia coli. This study aims to determine the antibacterial properties of garlic extract powder against Staphylococcus aureus and Escherichia coli. This research is the initial stage of the development of herbal medicines to treat Staphylococcus aureus and Escherichia coli infections. The antibacterial activity test was carried out by the liquid dilution method. The concentrations used were 30 mg/mL, 40 mg/mL, 50 mg/mL, 60 mg/mL and 70 mg/mL. The results showed that the Minimum Inhibitory Concentration (MIC) against Staphylococcus aureus and Escherichia coli was 40 mg/mL and 50 mg / mL. Minimum Bactericidal Concentration (MBC) results for Staphylococcus aureus and Escherichia coli are 50 mg/mL and 70 mg/mL. Based on the Simple Linear Regression test, the R2 value of Staphylococcus aureus and Escherichia coli is 0.545 and 0.785, so it can be concluded that there is an effect of garlic extract powder on the growth of Staphylococcus aureus and Escherichia coli by 54.5% and 78.5%. Garlic (Allium sativum L.) extract powder has potential as herbal medicine against bacterial infections but requires further research to determine its effect in vivo.


Author(s):  
Prithiv K R Kumar

Renal failure is a major health problem. The mortality rate remain high despite of several therapies. The most complex of the renal issues are solved through stem cells. In this review, different mechanism for cure of chronic kidney injury along with cell engraftment incorporated into renal structures will be analysed. Paracrine activities of embryonic or induced Pluripotent stem cells are explored on the basis of stem cell-induced kidney regeneration. Several experiments have been conducted to advance stem cells to ensure the restoration of renal functions. More vigour and organised protocols for delivering stem cells is a possibility for advancement in treatment of renal disease. Also there is a need for pressing therapies to replicate the tissue remodelling and cellular repair processes suitable for renal organs. Stem cells are the undifferentiated cells that have the ability to multiply into several cell types. In vivo experiments on animal’s stem cells have shown significant improvements in the renal regeneration and functions of organs. Nevertheless more studies show several improvements in the kidney repair due to stem cell regeneration.


2018 ◽  
Vol 68 (12) ◽  
pp. 2747-2751
Author(s):  
Marioara Nicula ◽  
Nicolae Pacala ◽  
Lavinia Stef ◽  
Ioan Pet ◽  
Dorel Dronca ◽  
...  

Living organisms take nutrients from the environment, and together with them, substances with toxic potential � such as heavy metals. Lead is one common metal pollutant especially in aquatic environment, from where the fish can be intoxicated very easily. Bioavailability, distribution, toxic action, synergistic and antagonistic effects are characteristics which can alter the fish health. Our experimental study followed the effects of lead overload in water on iron distribution, in different tissues sample Carassius gibelio Bloch fish. We performed the experiment in four different fish groups: control C; lead � Pb (administration of lead in water 0.075mg/mL of water, as Pb(NO3)2 x � H2O); lead (the same dose) and 2% of freeze-dry garlic incorporated into fishes� food � Pb+garlic; lead (the same dose) and 2% chlorella incorporated into fishes� food � Pb+chlorella, for 21 consecutive days. The iron concentration was analysed with AAS (Atomic Absorption Spectroscopy) from gills, muscle, skin (and scales), intestine, liver, heart, brain, ovary, testicles, and kidney. The obtained data presented a significantly decrease of iron content in all tested tissue samples that demonstrated, alteration of iron homeostasis, explained by a strong antagonistic effect of lead on iron. Our experiment showed that biologic active principles from garlic and chlorella act like natural protectors, and potentiate the iron deficiency even in the case of lead overload in aquatic environment, for fish.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Sign in / Sign up

Export Citation Format

Share Document