Abstract 455: The Roles of VEGF Receptors in Human Cardiac Progenitor Cell Contribution to New Vascular Formation

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Hanqing Zhao ◽  
Sreenivasan Ponnambalam ◽  
Andrew J Smith

Background: Human cardiac progenitor cells (CPCs) have been shown to play a valuable role in myocardial tissue maintenance, including their ability to develop into endothelial and vascular smooth muscle cells. The vascular endothelial growth factor (VEGF) ligand family has been identified as essential for angiogenesis. VEGF receptors (VEGFRs) comprise three main subtypes, VEGFRs1,2,3; our prior data identified CPC expression of both VEGFRs and of pro-angiogenic secreted growth factors. Hypothesis: Human CPCs utilise VEGFR signalling to potentiate CPC-driven angiogenesis, directly via CPC differentiation and indirectly via secrotome. Methods: Human adult myocardial tissue samples were collected during cardiac surgery and c-Kit-positive (c-Kit + ), CD45-negative (CD45 - ) CPCs isolated by immunomagnetic bead sorting, with five CPC lines generated from individual-donor samples. The c-Kit + / CD45 - CPC population was then characterised by clonogenicity assay, immunocytochemistry (ICC), and real-time RT-qPCR. Human CPC lines were FACS sorted into 3 lineage groups: endothelial (CD31 + ), smooth muscle (CD91 + /CD140b + /CD31 - ) and uncommitted (CD91 - /CD140b - /CD31 - ). Expression of VEGFRs and markers (SDF1; TGF-β) in CPC sub-populations was assessed by: qPCR; Western blot; ICC. Impact on signal transduction by VEGF-A stimulation was identified by Western blot and ICC. Results: Human CPCs were sorted into populations of: endothelial linage CD31 + (1.26% of total cells), smooth muscle lineage CD91 + /CD140b + /CD31 - (13.77%) and CD91 - /CD140b - /CD31 - (31.28%) cells. Analysis of gene expression identified VEGFRs 1, 2 and 3 in all three sub-populations, but only VEGFR1 expression was confirmed at protein level, seen in all three sub-populations. High expression levels of growth factors secreted by CPCs (SDF, TGF-β, VEGFs, FGF-2) were identified in human CPCs, also in all three sub-populations. Conclusion: Human CPC lines were isolated and analysed in bulk and sub-populations, identifying VEGFR1 expression at both gene and protein levels, but not VEGFR2 and VEGFR3. Our further work will identify signalling pathways in human CPCs linked to VEGF-A stimulation, along with the impact of VEFG-A stimulation on CPC secretome and linked angiogenic potential.

2021 ◽  
Author(s):  
Leyla Kilinc ◽  
Sema Avci ◽  
Hakan Soylu ◽  
Tugrul Cakir ◽  
Arif Aslaner ◽  
...  

Abstract Background: Analyze the effect of ozone therapy on Apelin and APJ expressions in peritonitis constituted colon anastomosis.Methods: Eighteen male Wistar albino rats weighing 250-300 g were used in this study. The rats were randomly assigned into three groups. In the colonic tissue samples Hematoxylin-Eosin staining (HE) and the Apelin and APJ immunostaining was applied. Also, Apelin and APJ protein levels between groups were determined with the Western-Blot method.Results: In the ozone therapy group, Apelin and APJ immunoreactivity was decreased compared to the anastomosis group. The protein levels of Apelin and APJ according to Western-Blot analysis are consistent with immunostaining. Conclusion: As a result, increased levels of Apelin and APJ in cecal punctuation and colonic anastomosis process can be deduced and said to contribute to worsening of tissue while it may be involved in return to normal of with treatment.


2004 ◽  
Vol 287 (5) ◽  
pp. H2201-H2208 ◽  
Author(s):  
Yingzi Chang ◽  
Daming Zhuang ◽  
Chunxiang Zhang ◽  
Aviv Hassid

Migration and proliferation of vascular smooth muscle cells are key events in injury-induced neointima formation. Several growth factors and ANG II are thought to be involved in neointima formation. A recent report indicated that vascular injury is associated with increased mRNA levels of protein tyrosine phosphatase (PTP)-1B (PTP-1B). In the present study, we tested the following hypotheses: 1) rat carotid artery injury induces the expression of PTP-1B, Src homology-2 domain phosphatase (SHP-2), and PTP-proline, glutamate, serine, and threonine sequence (PEST) protein; and 2) polypeptide growth factors as well as ANG II increase the levels of tyrosine phosphatases in cultured rat aortic smooth muscle cells. We found that vascular injury induced by balloon catheter increases the protein levels of aforementioned phosphatases and that these effects occur in a PTP specific, as well as temporally and regionally specific, manner. Moreover, treatment of cultured primary rat aortic smooth muscle cells with PDGF or bFGF, but not with IGF1, EGF, or ANG II, increases PTP-1B, SHP-2, and PTP-PEST protein levels. These results suggest that increased PDGF and bFGF levels, occurring after vascular injury, may induce expression of several PTPs.


2015 ◽  
pp. 633-641 ◽  
Author(s):  
M. ZÁLEŠÁK ◽  
P. BLAŽÍČEK ◽  
I. GABLOVSKÝ ◽  
V. LEDVÉNYIOVÁ ◽  
M. BARTEKOVÁ ◽  
...  

The aim of the study was to evaluate the impact of simulated acute hyperglycemia (HG) on PI3K/Akt signaling in preconditioned and non-preconditioned isolated rat hearts perfused with Krebs-Henseleit solution containing normal (11 mmol/l) or elevated (22 mmol/l) glucose subjected to ischemia-reperfusion. Ischemic preconditioning (IP) was induced by two 5-min cycles of coronary occlusion followed by 5-min reperfusion. Protein levels of Akt, phosphorylated (activated) Akt (P-Akt), as well as contents of BAX protein were assayed (Western blotting) in cytosolic fraction of myocardial tissue samples taken prior to and after 30-min global ischemia and 40-min reperfusion. In “normoglycemic” conditions (NG), IP significantly increased P-Akt at the end of long-term ischemia, while reperfusion led to its decrease together with the decline of BAX levels as compared to non-preconditioned hearts. On the contrary, under HG conditions, P-Akt tended to decline in IP-hearts after long-term ischemia, and it was significantly higher after reperfusion than in non-preconditioned controls. No significant influence of IP on BAX levels at the end of I/R was observed under HG conditions. It seems that high glucose may influence IP-induced activation of Akt and its downstream targets, as well as maintain persistent Akt activity that may be detrimental for the heart under above conditions.


2014 ◽  
Vol 1 (1) ◽  
pp. 36 ◽  
Author(s):  
Siti Fatimah ◽  
Muji Rahayu ◽  
Siti Aminah

Background : Egg  is one of the animal protein source, which has delicious taste, easy to digest and highly nutritious. Besides its affordable price, its supply availability is unquestionable as well. However, due to its short storability, it requires special treatment, such as preserving, to store it for long period. One way to preserve the egg is by pickling egg, which generally requires seven to ten days of marinating. During the process of marinating, there will be a visual change of egg white and yolk. Their structures  will be more solid (the occurrence of thickening process) because salinization will lead to protein denaturalization. Consequently, it has an influence as well towards the content of egg white protein of duck egg. This study is aimed to explore the impact of various time of pickling egg towards egg white protein of duck egg. Method  : The study where takes place in a laboratories, is a true experimental study for the reason that the researcher must provide intervention, hence all of potentially confounding variables are manageable. Samples that had been used in this study are duck eggs which were bought from North Brebes. This study is expected to generate data from four various time of pickling egg and control (no treatment). Since there are four samples, accordingly the number of data resulted are twenty. The resulted data will be descriptively presented in table, graph, presentation, and narration. Result  : Protein level examination within duck white egg shows changes  in protein levels that occurs in every variation of pickling egg time, where the average results of the assay of duck egg white protein is 14.94% without treatment (control), in five days of pickling time is 13.68%, in seven days of pickling time is 13.29%, in nine days of pickling time is 12.87% and eleven days of pickling time is 12.78%. Conclusion  : There is a significant impact among the period of pickling time to the protein level degradation of duck white egg. Keywords : Duck egg, period of pickling time, level protein of duck white egg.


2020 ◽  
Vol 6 (6) ◽  
pp. 94-100
Author(s):  
Serge-Olivier Konan KOUASSI ◽  
◽  
Yves Bénarèce Tra DJE BI ◽  
Soualio KAMAGATE ◽  
Mathieu Nahounou BLEYERE ◽  
...  

The study aims to determine the impact of dietary crude protein levels on the hematological parameters of Japanese quail from growth to ovipositor. To this end, five feeds with different crude protein levels (18, 20, 22, 24 and 26%) were supplied to 700 quails of three weeks of age. These were subdivided into six batches, including three batches of females and three batches of males for each feed group. After subjecting the quails to diets containing the different protein levels, four samples were taken at the fourth, fifth, sixth and seventh week of age. The samples taken were analyzed using an SYSMEX XN 350 automated hematological analyzer. The results of this investigation indicated that non-significant differences (P > 0.05) were observed in hematological parameters in both female and male quails. This study showed that dietary crude protein levels had no impact on the health status of Japanese quails. Keywords: Japanese quails, Crude protein, Hematological parameters.


2020 ◽  
Vol 17 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Dan Wang ◽  
Zhifu Fei ◽  
Song Luo ◽  
Hai Wang

Objectives: Alzheimer's disease (AD), also known as senile dementia, is a common neurodegenerative disease characterized by progressive cognitive impairment and personality changes. Numerous evidences have suggested that microRNAs (miRNAs) are involved in the pathogenesis and development of AD. However, the exact role of miR-335-5p in the progression of AD is still not clearly clarified. Methods: The protein and mRNA levels were measured by western blot and RNA extraction and quantitative real-time PCR (qRT-PCR), respectively. The relationship between miR-335-5p and c-jun-N-terminal kinase 3 (JNK3) was confirmed by dual-luciferase reporter assay. SH-SY5Y cells were transfected with APP mutant gene to establish the in vitro AD cell model. Flow cytometry and western blot were performed to evaluate cell apoptosis. The APP/PS1 transgenic mice were used as an in vivo AD model. Morris water maze test was performed to assess the effect of miR- 335-5p on the cognitive deficits in APP/PS1 transgenic mice. Results: The JNK3 mRNA expression and protein levels of JNK3 and β-Amyloid (Aβ) were significantly up-regulated, and the mRNA expression of miR-335-5p was down-regulated in the brain tissues of AD patients. The expression levels of miR-335-5p and JNK3 were significantly inversely correlated. Further, the dual Luciferase assay verified the relationship between miR-335- 5p and JNK3. Overexpression of miR-335-5p significantly decreased the protein levels of JNK3 and Aβ and inhibited apoptosis in SH-SY5Y/APPswe cells, whereas the inhibition of miR-335-5p obtained the opposite results. Moreover, the overexpression of miR-335-5p remarkably improved the cognitive abilities of APP/PS1 mice. Conclusion: The results revealed that the increased JNK3 expression, negatively regulated by miR-335-5p, may be a potential mechanism that contributes to Aβ accumulation and AD progression, indicating a novel approach for AD treatment.


2020 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Jing Ma ◽  
Yuan Gao ◽  
Wei Tang ◽  
Wei Huang ◽  
Yong Tang

Background: Studies have suggested that cognitive impairment in Alzheimer’s disease (AD) is associated with dendritic spine loss, especially in the hippocampus. Fluoxetine (FLX) has been shown to improve cognition in the early stage of AD and to be associated with diminishing synapse degeneration in the hippocampus. However, little is known about whether FLX affects the pathogenesis of AD in the middle-tolate stage and whether its effects are correlated with the amelioration of hippocampal dendritic dysfunction. Previously, it has been observed that FLX improves the spatial learning ability of middleaged APP/PS1 mice. Objective: In the present study, we further characterized the impact of FLX on dendritic spines in the hippocampus of middle-aged APP/PS1 mice. Results: It has been found that the numbers of dendritic spines in dentate gyrus (DG), CA1 and CA2/3 of hippocampus were significantly increased by FLX. Meanwhile, FLX effectively attenuated hyperphosphorylation of tau at Ser396 and elevated protein levels of postsynaptic density 95 (PSD-95) and synapsin-1 (SYN-1) in the hippocampus. Conclusion: These results indicated that the enhanced learning ability observed in FLX-treated middle-aged APP/PS1 mice might be associated with remarkable mitigation of hippocampal dendritic spine pathology by FLX and suggested that FLX might be explored as a new strategy for therapy of AD in the middle-to-late stage.


Author(s):  
Hongtao Li ◽  
Peng Chen ◽  
Lei Chen ◽  
Xinning Wang

Background: Nuclear factor kappa B (NF-κB) is usually activated in Wilms tumor (WT) cells and plays a critical role in WT development. Objective: The study purpose was to screen a NF-κB inhibitor from natural product library and explore its effects on WT development. Methods: Luciferase assay was employed to assess the effects of natural chemical son NF-κB activity. CCK-8 assay was conducted to assess cell growth in response to naringenin. WT xenograft model was established to analyze the effect of naringenin in vivo. Quantitative real-time PCR and Western blot were performed to examine the mRNA and protein levels of relative genes, respectively. Results: Naringenin displayed significant inhibitory effect on NF-κB activation in SK-NEP-1 cells. In SK-NEP-1 and G-401 cells, naringenin inhibited p65 phosphorylation. Moreover, naringenin suppressed TNF-α-induced p65 phosphorylation in WT cells. Naringenin inhibited TLR4 expression at both mRNA and protein levels in WT cells. CCK-8 staining showed that naringenin inhibited cell growth of the two above WT cells in dose-and time-dependent manner, whereas Toll-like receptor 4 (TLR4) over expression partially reversed the above phenomena. Besides, naringenin suppressed WT tumor growth in dose-and time-dependent manner in vivo. Western blot found that naringenin inhibited TLR4 expression and p65 phosphorylation in WT xenograft tumors. Conclusion: Naringenin inhibits WT development viasuppressing TLR4/NF-κB signaling


2018 ◽  
Vol 18 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Aikebaier Maimaiti ◽  
Amier Aili ◽  
Hureshitanmu Kuerban ◽  
Xuejun Li

Aims: Gallic acid (GA) is generally distributed in a variety of plants and foods, and possesses cell growth-inhibiting activities in cancer cell lines. In the present study, the impact of GA on cell viability, apoptosis induction and possible molecular mechanisms in cultured A549 lung carcinoma cells was investigated. Methods: In vitro experiments showed that treating A549 cells with various concentrations of GA inhibited cell viability and induced apoptosis in a dose-dependent manner. In order to understand the mechanism by which GA inhibits cell viability, comparative proteomic analysis was applied. The changed proteins were identified by Western blot and siRNA methods. Results: Two-dimensional electrophoresis revealed changes that occurred to the cells when treated with or without GA. Four up-regulated protein spots were clearly identified as malate dehydrogenase (MDH), voltagedependent, anion-selective channel protein 1(VDAC1), calreticulin (CRT) and brain acid soluble protein 1(BASP1). VDAC1 in A549 cells was reconfirmed by western blot. Transfection with VDAC1 siRNA significantly increased cell viability after the treatment of GA. Further investigation showed that GA down regulated PI3K/Akt signaling pathways. These data strongly suggest that up-regulation of VDAC1 by GA may play an important role in GA-induced, inhibitory effects on A549 cell viability.


2020 ◽  
Vol 11 (1) ◽  
pp. 241-250
Author(s):  
Zhenyu Li ◽  
Guangqian Ding ◽  
Yudi Wang ◽  
Zelong Zheng ◽  
Jianping Lv

AbstractTranscription factor EB (TFEB)-based gene therapy is a promising therapeutic strategy in treating neurodegenerative diseases by promoting autophagy/lysosome-mediated degradation and clearance of misfolded proteins that contribute to the pathogenesis of these diseases. However, recent findings have shown that TFEB has proinflammatory properties, raising the safety concerns about its clinical application. To investigate whether TFEB induces significant inflammatory responses in the brain, male C57BL/6 mice were injected with phosphate-buffered saline (PBS), adeno-associated virus serotype 8 (AAV8) vectors overexpressing mouse TFEB (pAAV8-CMV-mTFEB), or AAV8 vectors expressing green fluorescent proteins (GFPs) in the barrel cortex. The brain tissue samples were collected at 2 months after injection. Western blotting and immunofluorescence staining showed that mTFEB protein levels were significantly increased in the brain tissue samples of mice injected with mTFEB-overexpressing vectors compared with those injected with PBS or GFP-overexpressing vectors. pAAV8-CMV-mTFEB injection resulted in significant elevations in the mRNA and protein levels of lysosomal biogenesis indicators in the brain tissue samples. No significant changes were observed in the expressions of GFAP, Iba1, and proinflammation mediators in the pAAV8-CMV-mTFEB-injected brain compared with those in the control groups. Collectively, our results suggest that AAV8 successfully mediates mTFEB overexpression in the mouse brain without inducing apparent local inflammation, supporting the safety of TFEB-based gene therapy in treating neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document