Use of cottonseed protein as a strength additive for nonwoven cotton

2018 ◽  
Vol 89 (9) ◽  
pp. 1725-1733 ◽  
Author(s):  
Andres Villalpando ◽  
Michael Easson ◽  
HN Cheng ◽  
Brian Condon

Nonwoven fabrics have grown in popularity in recent years due to their overwhelming usage in a wide range of consumer products. Cotton-based nonwovens are of particular interest because of their ability to be recycled and reused, resulting in a more environmentally friendly product compared to their petroleum-based counterparts. The current research characterized the use of cottonseed protein as an additive to increase the dry strength of cotton-based nonwovens. The tensile strength of nonwovens was found to increase as the concentration of protein applied was increased. At 11% protein concentration, the tear strength and burst strength increased significantly (relative to the nonwoven by itself) by 288% (machine direction) and 295%, respectively. Further characterization by thermogravimetric analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy suggested that cottonseed protein interacted with the cotton fiber in the nonwoven fabric to produce the increased dry strength.

2021 ◽  
Vol 15 (1) ◽  
pp. 27-36
Author(s):  
V. V. Mykhaliuk ◽  
◽  
V. V. Havryliak ◽  

Background. Keratins are natural biopolymers with a wide range of applications in the field of biotechnology. Materials and Methods. Extraction of keratins was performed by a modified Nakamura method using 250 mM DTT. The protein concentration in the supernatant was determined by Bradford method. The protein composition was studied by their electro­phoretic separation in a polyacrylamide gel in the presence of sodium dodecyl sulfate. The films were made by casting. The surface characteristics of the films were determined using a scanning electron microscope REMMA-102. The elemental composition of the films was determined using an X-ray microanalyzer. Results. The protein concentration in the supernatant was 3.75 mg/mL. After using dithiothreitol in the extraction mixture, we obtained proteins of intermediate filaments with a molecular weight of 40–60 kDa and a low Sulfur content. In the low molecular weight region, we obtained keratin-associated proteins with a molecular weight of 10–30 kDa and a high content of Sulfur. These proteins belong to fibrillar proteins, which can be used as a matrix for the creation of new keratin-containing biocomposites with a wide range of applications in reparative medicine and tissue engineering. Based on the obtained keratin extract, polymer films with and without the addition of glycerol were made. Scanning electron microscopy revealed that glycerol provided the film structure with homogeneity and plasticity due to the accumulation of moisture after the fixation by water vapor. The X-ray microanalysis of films revealed such elements as Sodium, Silicon, Sulfur, Potassium. Among the detected elements, Sulfur has the largest share that is due to the large number of disulfide bonds in the keratin molecule. Conclusions. The polymer keratin films with the addition of glycerol demonstrated better mechanical properties and can be used in biomedicine.


2014 ◽  
Vol 58 (2) ◽  
pp. 59-70 ◽  
Author(s):  
Seydur Rahman ◽  
Ibamelaker Thangkhiew ◽  
Sudhanya R. Hajong

Abstract The hypopharyngeal gland (HPG) is the principal organ of protein synthesis in honey bees. It is involved in larval rearing. We examined the fresh head weight, HPG acini diameter, and HPG protein content in worker bees engaged in different tasks and under brood and broodless conditions. Scanning electron microscopy revealed that the HPG acini diameter of worker bees was related to their task. The highest HPG volume was found in nurse bees, and the volume regressed when the task changed from guarding to foraging. The fresh head weight was positively correlated with HPG acini diameter. Although, there was no positive correlation between HPG acini diameter and protein concentration, the glandular protein concentration increased progressively in nurse bees and declined in guard and forager bees. Histochemistry revealed similar results. Despite displaying significantly larger glands, guard bee protein secretion was similar to that of the foragers. Brooding had a significant effect on HPG activity. Only worker bees from the colony with an intact brood showed elevated rates of protein synthesis; thus, it is possible that a signal was emitted by the brood, which stimulated protein synthesis in the HPG. However, the size of the HPG was similar in both brood and broodless conditions.


2003 ◽  
Vol 767 ◽  
Author(s):  
A. K. Sikder ◽  
S. Thagella ◽  
P. B. Zantye ◽  
Ashok Kumar

AbstractLower mechanical strength, reduced cohesive strength and lack of compatibility with other interconnect materials, are the major challenges involved in chemical mechanical polishing (CMP) of Cu metallization with ultra low-k materials as interlayer dielectrics. In this study we have investigated the polishing behavior of patterned Cu samples with underneath different low-k materials using two different slurries and a wide range of machine parameters. CMP micro tribometer was used to polish the samples with different rotations of platen (50 to 250 RPM) and down forces (1-6 PSI). Friction co-efficient and wear behavior were also investigated at different conditions. Optical and scanning electron microscopy was used to investigate the polished surface. It was observed that the two different Cu slurries used for polishing have marked effects on the polishing of Cu-low-k stack with respect to wear and delamination.


2020 ◽  
Vol 9 (12) ◽  
pp. 3973
Author(s):  
Ionuț Isaia Jeican ◽  
Lucian Barbu Tudoran ◽  
Adrian Florea ◽  
Mirela Flonta ◽  
Veronica Trombitas ◽  
...  

(1) Background: Chronic rhinosinusitis (CRS) represents a wide range of infectious-inflammatory processes affecting, simultaneously, the nose and paranasal sinuses mucosa. The paper presents outcomes of the investigation of CRS microbiological characteristics in a group of 32 patients. (2) Methods: The purulent samples were collected during functional endoscopic sinus surgery. Agar plates were incubated and examined. All types of colonies were identified using Matrix-Assisted Laser Desorption - Ionisation-Time of Flight Mass Spectrometry (MALDI-TOF MS). For scanning electron microscopy, samples were fixed and sputter-coated with 10 nm gold and analyzed using a scanning electron microscope. For transmission electron microscopy, samples were fixed, postfixed, and dehydrated. After polymerization, ultrathin sections were collected on carbon coated copper grids and analyzed with Jeol JEM1010 TEM. (3) Results: Positive microbiological diagnosis was obtained in 62.5% of cases. The most frequent species found are Staphylococcus aureus and Streptococcus constellatus subsp. pharyngis. Corynebacterium aurimucosum and Eggerthia catenaformis were unreported species in CRS until the present. Biofilm was evidenced in 43.7% of sinus mucosa samples. Ciliary disorientation, atrophy, and no ciliated cells were also identified. (4) Conclusion: The microbial factor—pathogen or opportunistic—is one of the most important pathological links in chronic rhinosinusitis. MALDI-TOF MS allows easily and quickly identification of germs.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 207
Author(s):  
Eleonora Santecchia ◽  
Marcello Cabibbo ◽  
Abdel Magid Salem Hamouda ◽  
Farayi Musharavati ◽  
Anton Popelka ◽  
...  

The applications of aluminum and its alloys are still limited by low hardness and low wear resistance properties. Surface modifications, such anodizing and plasma electrolytic oxidation, represent a feasible way to overcome these drawbacks. In this study, discs of AA6082 were subjected to the so-called G.H.A. hard anodizing process leading to an anodized layer having a honeycomb-like structure. Samples having alumina layer thicknesses of 10, 50 and 100 μm were subjected to unidirectional dry sliding wear tests, using bearing steel and silicon nitride as counterbody materials. Surface and structure characterization of the samples were performed before and after the tribological tests, using a wide range of techniques; atomic force microscopy and scanning electron microscopy techniques were used before the wear tests. The wear scars were characterized by scanning electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy techniques. Results show that the different thickness of the anodized layer does not affect the pores dimensions but has an influence on the micrometric domains in which the pores are divided. These features coupled with the wear test conditions, show to have a strong influence on the wear behavior. The thinnest sample showed also the best performance against the ceramic counterbody.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 768 ◽  
Author(s):  
Marcin H. Kudzin ◽  
Zdzisława Mrozińska

This research is focused on obtaining antimicrobial hybrid materials consisting of poly(lactide) nonwoven fabrics and using phosphoro-organic compound—fosfomycin—as a coating and modifying agent. Polylactide (PLA) presents biodegradable polymer with multifunctional application, widely engaged in medical related areas. Fosfomycin as functionalized phosphonates presents antibiotic properties expressed by broad spectrum of antimicrobial properties. The analysis of these biofunctionalized nonwoven fabrics processed by the melt-blown technique, included: scanning electron microscopy (SEM), UV/VIS transmittance, FTIR spectrometry, air permeability. The functionalized nonwovens were tested on microbial activity tests against colonies of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria.


2014 ◽  
Vol 915-916 ◽  
pp. 933-941 ◽  
Author(s):  
Zhong Jie Zhang ◽  
Chang Yu Lu ◽  
Wei Huang ◽  
Wei Sheng Guan ◽  
Yue Xin Peng

The effective remove to tetracycline still remains a big challenge for scientists. In this work, we used a new method for preparing functional magnetic CNTS with ferrite nanoparticles. A wide range of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurements were applied to characterize the obtained Fe2O3/CNTs. Moreover, we have also studied the properties of adsorbent to tetracycline. In addition, we have found that the Fe2O3/CNTs are better reusable adsorbent than other traditional adsorbents by magnetic separation recycling method.


2011 ◽  
Vol 493-494 ◽  
pp. 820-825 ◽  
Author(s):  
Fernanda Danielle Mishima ◽  
Luis Henrique Leme Louro ◽  
Felipe Nobre Moura ◽  
Luciano Andrade Gobbo ◽  
Marcelo Henrique Prado da Silva

Hydroxyapatite scaffolds have been being produced by a wide range of processes. The optimun material to be used as bone graft has to be partially resorbable, with resorption rates similar to new bone formation ones. The samples must have porosity compatible with tissue ingrowth. Hydroxyapatite and tricalcium phosphate ceramics are good choices for designing such materials. In the present study, polymeric sponges were coated with hydroxyapatite and sintered. The method consists of coating polyurethane sponges substrates in an aqueous solution rich in phosphate (PO4)3-and calcium (Ca)2+ions. The solution is composed by 0.5M Ca(OH)2, 0.3M H3PO4and 1M CH3CHCO2HOH (lactic acid) at pH of 3.7. The sponges were immersed in a beaker with the solution and heated up to 80°C to precipitate monetite on the sponge. Continuous and adherent coatings were formed on the surface of sponges interconections. These coatings were characterised by X-ray diffractometry and the only identified phase was monetite. The substrates were converted to hydroxyapatite in an alkali solution.The total conversion from monetite to hydroxyapatite was confirmed by XRD analyses. The struts were heat treated in order to eliminate the organic sponge and sinter the scaffolds. After sintering, hydroxyapatite and tricalcium phosphate were identified on the struts. Optical microscopy revealed the morphology of the struts, while scanning electron microscopy (SEM) showed the precipitates morphology. The method showed to be efficient in the production of porous scaffolds.


2013 ◽  
Vol 365-366 ◽  
pp. 1074-1077 ◽  
Author(s):  
Chin Mei Lin ◽  
Ching Hui Lin ◽  
Yu Tien Huang ◽  
Ching Wen Lou ◽  
Jia Horng Lin

Technical development and rapid telecommunication create convenient consumer products, but produce electromagnetic radiation that hurts the human body, which makes the development of antistatic and electromagnetic-wave-resistant textiles important. This study combines polylactic acid (PLA) fibers and low melting point polylactic (LPLA) fibers by needle punching to make PLA nonwoven fabrics. The lamination layer number is then changed to explore its influence on the mechanical properties of the PLA nonwoven fabrics. Next, the nonwoven fabrics are spray-coated with polyaniline (PANI) to form the PANI/PLA nonwoven fabrics. The PANI/PLA nonwoven fabric with a lamination layer number of 5 has the optimum tensile and tear strength. A coating of PANI can reduce the surface resistivity.


2019 ◽  
Vol 20 (2) ◽  
pp. 522-534
Author(s):  
T. Balinyan ◽  
L. Derecha ◽  
Yu. Nosatenko

The article considers the need for a comprehensive study of biological damage to fibrous materials by scanning electron microscopy. The main types and characteristics of fibers and fibrous materials, their types of damage, in particular, biological, and the mechanism of their formation are described. It is shown that with modern methods for studying morphological characteristics, the most effective is the method of scanning electron microscopy, which makes it possible to directly study the object in a wide range of magnifications. The use of scanning electron microscopy makes it possible to identify qualitatively new volumetric microsigns when conducting studies of fibrous materials. Biological damage agents (biofactors) are considered — microbiological (bacteria, microbes, fungi, blue-green algae), phytological (mosses, lichens, higher plants, algae), zoological (insects, birds, mammals). Attention is focused on the study of injuries caused by mold caused by moths, dogs, etc. Conducting a comprehensive study of various types of damage to materials of various fibrous nature allows us to obtain an information database, the possibility of differentiating chemical, mechanical, thermal and biological damage, identifying microsigns that individualize one or another object (factor) of action, influence, increasing the potential for obtaining trace information about the actual data and circumstances of the event in those cases when only by external morphological features of the diagnosis It is not possible to repair damage. The data obtained indicate the effectiveness of the chosen research area. The results of the studies are positive for creating the optimal research scheme, methods of microscopic studies of damage to materials of fibrous nature in order to solve diagnostic, identification and situational tasks of forensic examination.


Sign in / Sign up

Export Citation Format

Share Document