Effect of time restricted feeding on the gut microbiome in adults with obesity: A pilot study

2020 ◽  
Vol 26 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Kelsey Gabel ◽  
Jarrad Marcell ◽  
Kate Cares ◽  
Faiza Kalam ◽  
Sofia Cienfuegos ◽  
...  

Background: Time restricted feeding is a form of intermittent fasting where participants shorten the daily window in which they eat. Aim: This is the first study to examine the effects of intermittent fasting on changes in the gut microbiome. Methods: Adults with obesity ( n = 14) participated in a daily 8-hour time restricted feeding intervention (8-hour feeding window/16-hour fasting window) for 12 weeks. Fecal microbiota were determined by 16 S rRNA (ribosomal ribonucleic acid) gene sequencing of stool samples. Results: Body weight decreased ( P < 0.05) by -2 ± 1 kg. Gut microbiota phylogenetic diversity remained unchanged. The two most common phyla were Firmicutes and Bacteroidetes accounting for 61.2% and 26.9% of total abundance at baseline. No significant alterations in the abundance of Firmicutes, Bacteroidetes, or any other phyla were detected after 12 weeks of time restricted feeding. Conclusions: Time restricted feeding did not significantly alter the diversity or overall composition of the gut microbiome.

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 748 ◽  
Author(s):  
Jin-Young Lee ◽  
Mohamed Mannaa ◽  
Yunkyung Kim ◽  
Jehun Kim ◽  
Geun-Tae Kim ◽  
...  

The aim of this study was to investigate differences between the gut microbiota composition in patients with rheumatoid arthritis (RA) and those with osteoarthritis (OA). Stool samples from nine RA patients and nine OA patients were collected, and DNA was extracted. The gut microbiome was assessed using 16S rRNA gene amplicon sequencing. The structures and differences in the gut microbiome between RA and OA were analyzed. The analysis of diversity revealed no differences in the complexity of samples. The RA group had a lower Bacteroidetes: Firmicutes ratio than did the OA group. Lactobacilli and Prevotella, particularly Prevotella copri, were more abundant in the RA than in the OA group, although these differences were not statistically significant. The relative abundance of Bacteroides and Bifidobacterium was lower in the RA group. At the species level, the abundance of certain bacterial species was significantly lower in the RA group, such as Fusicatenibacter saccharivorans, Dialister invisus, Clostridium leptum, Ruthenibacterium lactatiformans, Anaerotruncus colihominis, Bacteroides faecichinchillae, Harryflintia acetispora, Bacteroides acidifaciens, and Christensenella minuta. The microbial properties of the gut differed between RA and OA patients, and the RA dysbiosis revealed results similar to those of other autoimmune diseases, suggesting that a specific gut microbiota pattern is related to autoimmunity.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 246
Author(s):  
Felix C.F. Schmitt ◽  
Martin Schneider ◽  
William Mathejczyk ◽  
Markus A. Weigand ◽  
Jane C. Figueiredo ◽  
...  

Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups—patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Christophe Lay ◽  
Collins Wenhan Chu ◽  
Rikky Wenang Purbojati ◽  
Enzo Acerbi ◽  
Daniela I. Drautz-Moses ◽  
...  

Abstract Background The compromised gut microbiome that results from C-section birth has been hypothesized as a risk factor for the development of non-communicable diseases (NCD). In a double-blind randomized controlled study, 153 infants born by elective C-section received an infant formula supplemented with either synbiotic, prebiotics, or unsupplemented from birth until 4 months old. Vaginally born infants were included as a reference group. Stool samples were collected from day 3 till week 22. Multi-omics were deployed to investigate the impact of mode of delivery and nutrition on the development of the infant gut microbiome, and uncover putative biological mechanisms underlying the role of a compromised microbiome as a risk factor for NCD. Results As early as day 3, infants born vaginally presented a hypoxic and acidic gut environment characterized by an enrichment of strict anaerobes (Bifidobacteriaceae). Infants born by C-section presented the hallmark of a compromised microbiome driven by an enrichment of Enterobacteriaceae. This was associated with meta-omics signatures characteristic of a microbiome adapted to a more oxygen-rich gut environment, enriched with genes associated with reactive oxygen species metabolism and lipopolysaccharide biosynthesis, and depleted in genes involved in the metabolism of milk carbohydrates. The synbiotic formula modulated expression of microbial genes involved in (oligo)saccharide metabolism, which emulates the eco-physiological gut environment observed in vaginally born infants. The resulting hypoxic and acidic milieu prevented the establishment of a compromised microbiome. Conclusions This study deciphers the putative functional hallmarks of a compromised microbiome acquired during C-section birth, and the impact of nutrition that may counteract disturbed microbiome development. Trial registration The study was registered in the Dutch Trial Register (Number: 2838) on 4th April 2011.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Edward C. Deehan ◽  
Eloisa Colin-Ramirez ◽  
Lucila Triador ◽  
Karen L. Madsen ◽  
Carla M. Prado ◽  
...  

Abstract Background Accumulating evidence suggests that the metabolic effects of metformin and fermentable fibers are mediated, in part, through diverging or overlapping effects on the composition and metabolic functions of the gut microbiome. Pre-clinical animal models have established that the addition of fiber to metformin monotherapy improves glucose tolerance. However, possible synergistic effects of combination therapy (metformin plus fiber) have not been investigated in humans. Moreover, the underlying mechanisms of synergy have yet to be elucidated. The aim of this study is to compare in adolescents with obesity the metabolic effects of metformin and fermentable fibers in combination with those of metformin or fiber alone. We will also determine if therapeutic responses correlate with compositional and functional features of the gut microbiome. Methods This is a parallel three-armed, double-blinded, randomized controlled trial. Adolescents (aged 12–18 years) with obesity, insulin resistance (IR), and a family history of type 2 diabetes mellitus (T2DM) will receive either metformin (850 mg p.o. twice/day), fermentable fibers (35 g/day), or a combination of metformin plus fiber for 12 months. Participants will be seen at baseline, 3, 6, and 12 months, with a phone follow-up at 1 and 9 months. Primary and secondary outcomes will be assessed at baseline, 6, and 12 months. The primary outcome is change in IR estimated by homeostatic model assessment of IR; key secondary outcomes include changes in the Matsuda index, oral disposition index, body mass index z-score, and fat mass to fat-free mass ratio. To gain mechanistic insight, endpoints that reflect host-microbiota interactions will also be assessed: obesity-related immune, metabolic, and satiety markers; humoral metabolites; and fecal microbiota composition, short-chain fatty acids, and bile acids. Discussion This study will compare the potential metabolic benefits of fiber with those of metformin in adolescents with obesity, determine if metformin and fiber act synergistically to improve IR, and elucidate whether the metabolic benefits of metformin and fiber associate with changes in fecal microbiota composition and the output of health-related metabolites. This study will provide insight into the potential role of the gut microbiome as a target for enhancing the therapeutic efficacy of emerging treatments for T2DM prevention. Trial registration ClinicalTrials.gov NCT04578652. Registered on 8 October 2020.


mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Christopher Staley ◽  
Colleen R. Kelly ◽  
Lawrence J. Brandt ◽  
Alexander Khoruts ◽  
Michael J. Sadowsky

ABSTRACT Bacterial communities from subjects treated for recurrent Clostridium difficile infection (rCDI) by fecal microbiota transplantation (FMT), using either heterologous donor stool samples or autologous stool samples, were characterized by Illumina next-generation sequencing. As previously reported, the success of heterologous FMT (90%) was superior to that of autologous FMT (43%) ( P = 0.019), and post-FMT intestinal bacterial communities differed significantly between treatment arms ( P < 0.001). Subjects cured by autologous FMT typically had greater abundances of the Clostridium XIVa clade and Holdemania bacteria prior to treatment, and the relative abundances of these groups increased significantly after FMT compared to heterologous FMT and pre-FMT samples. The typical shift to post-FMT, donor-like assemblages, featuring high relative abundances of genera within the Bacteroidetes and Firmicutes phyla, was not observed in the autologous FMT subjects. Autologous FMT patient bacterial communities were significantly different in composition than those for heterologous FMT patients and donors ( P < 0.001). The SourceTracker program, which employs a Bayesian algorithm to determine source contributions to sink communities, showed that patients initially treated by heterologous FMT had significantly higher percentages of engraftment (i.e., similarity to donor communities, mean value of 74%) compared to those who suffered recurrence following autologous FMT (1%) ( P ≤ 0.013). The findings of this study suggest that complete donor engraftment may be not necessary if functionally critical taxa are present in subjects following antibiotic therapy. IMPORTANCE This study provides a detailed characterization of fecal bacterial communities in subjects who participated in a previously published randomized clinical trial to treat recurrent C. difficile infection (rCDI). Bacterial communities were characterized to determine differences between subjects who received fecal bacteria either from healthy donor stool samples or their own stool samples as “placebo” in order to determine which groups of bacteria were most important in achieving a cure. The results of this study suggested that bacteria associated with secondary bile acid metabolism could potentially provide resistance to infection and that complete transfer of healthy donor microorganisms was not necessary to resolve CDI following unsuccessful antibiotic treatment.


Author(s):  
Thunyaporn Phungviwatnikul ◽  
Anne H Lee ◽  
Sara E Belchik ◽  
Jan S Suchodolski ◽  
Kelly S Swanson

Abstract Canine obesity is associated with reduced lifespan and metabolic dysfunction, but can be managed by dietary intervention. This study aimed to determine the effects of restricted feeding of a high-protein, high-fiber (HPHF) diet and weight loss on body composition, physical activity, blood metabolites, and fecal microbiota and metabolites of overweight dogs. Twelve spayed female dogs [age: 5.5±1.1 yr; body weight (BW): 14.8±2.0 kg, body condition score (BCS): 7.9±0.8] were fed a HPHF diet during a 4-wk baseline phase to maintain BW. After baseline (wk 0), dogs were first fed 80% of baseline intake and then adjusted to target 1.5% weekly weight loss for 24 wk. Body composition using dual-energy x-ray absorptiometry and blood samples (wk 0, 6, 12, 18, 24), voluntary physical activity (wk 0, 7, 15, 23), and fresh fecal samples for microbiota and metabolite analysis (wk 0, 4, 8, 12, 16, 20, 24) were measured over time. Microbiota data were analyzed using QIIME 2. All data were analyzed statistically over time using SAS 9.4. After 24 wk, dogs lost 31.2% of initial BW and had 1.43±0.73% weight loss per wk. BCS decreased (P&lt;0.0001) by 2.7 units, fat mass decreased (P&lt;0.0001) by 3.1 kg, and fat percentage decreased (P&lt;0.0001) by 3.1 kg and 11.7% with weight loss. Many serum metabolites and hormones were altered, with triglycerides, leptin, insulin, C-reactive protein, and interleukin-6 decreasing (P&lt;0.05) with weight loss. Relative abundances of fecal Bifidobacterium, Coriobacteriaceae UCG-002, undefined Muribaculaceae, Allobaculum, Eubacterium, Lachnospira, Negativivibacillus, Ruminococcus gauvreauii group, uncultured Erysipelotrichaceae, and Parasutterella increased (P&lt;0.05), whereas Prevotellaceae Ga6A1 group, Catenibacterium, Erysipelatoclostridium, Fusobacterium, Holdemanella, Lachnoclostridium, Lactobacillus, Megamonas, Peptoclostridium, Ruminococcus gnavus group, and Streptococcus decreased (P&lt;0.01) with weight loss. Despite the number of significant changes, a state of dysbiosis was not observed in overweight dogs. Fecal ammonia and secondary bile acids decreased, while fecal valerate increased with weight loss. Several correlations between gut microbial taxa and biological parameters were observed. Our results suggest that restricted feeding of a HPHF diet and weight loss promotes fat mass loss, minimizes lean mass loss, reduces inflammatory marker and triglyceride concentrations, and modulates fecal microbiota phylogeny and activity in overweight dogs.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yao Su ◽  
Hong-Kun Wang ◽  
Xu-Pei Gan ◽  
Li Chen ◽  
Yan-Nan Cao ◽  
...  

Abstract Background The causes of gestational diabetes mellitus (GDM) are still unclear. Recent studies have found that the imbalance of the gut microbiome could lead to disorders of human metabolism and immune system, resulting in GDM. This study aims to reveal the different gut compositions between GDM and normoglycemic pregnant women and find the relationship between gut microbiota and GDM. Methods Fecal microbiota profiles from women with GDM (n = 21) and normoglycemic women (n = 32) were assessed by 16S rRNA gene sequencing. Fasting metabolic hormone concentrations were measured using multiplex ELISA. Results Metabolic hormone levels, microbiome profiles, and inferred functional characteristics differed between women with GDM and healthy women. Additionally, four phyla and seven genera levels have different correlations with plasma glucose and insulin levels. Corynebacteriales (order), Nocardiaceae (family), Desulfovibrionaceae (family), Rhodococcus (genus), and Bacteroidetes (phylum) may be the taxonomic biomarkers of GDM. Microbial gene functions related to amino sugar and nucleotide sugar metabolism were found to be enriched in patients with GDM. Conclusion Our study indicated that dysbiosis of the gut microbiome exists in patients with GDM in the second trimester of pregnancy, and gut microbiota might be a potential diagnostic biomarker for the diagnosis, prevention, and treatment of GDM.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 997 ◽  
Author(s):  
Derek M. Lin ◽  
Henry C. Lin

Bacteriophages are the most prominent members of the gut microbiome, outnumbering their bacterial hosts by a factor of 10. Phages are bacteria-specific viruses that are gaining attention as highly influential regulators of the gut bacterial community. Dysregulation of the gut bacterial community contributes to dysbiosis, a microbiome disorder characterized by compositional and functional changes that contribute to disease. A role for phages in gut microbiome dysbiosis is emerging with evidence that the gut phage community is altered in dysbiosis-associated disorders such as colorectal cancer and inflammatory bowel disease. Several recent studies have linked successful fecal microbiota transplantation to uptake of the donor’s gut phage community, offering some insight into why some recipients respond to treatment whereas others do not. Here, we review the literature supporting a role for phages in mediating the gut bacterial community, giving special attention to Western diet dysbiosis as a case study to demonstrate a theoretical phage-based mechanism for the establishment and maintenance of dysbiosis.


2021 ◽  
Author(s):  
Yishay Pinto ◽  
Sigal Frishman ◽  
Sondra Turjeman ◽  
Adi Eshel ◽  
Meital Nuriel-Ohayon ◽  
...  

AbstractGestational diabetes mellitus (GDM) is a condition in which non-diabetic women are diagnosed with glucose intolerance during pregnancy, typically in the second trimester. GDM can lead to a wide range of obstetrical and metabolic complications for both mother and neonate1. Early identification of GDM risk, along with a better understanding of its pathophysiology during the first trimester of pregnancy, may be effective in reducing GDM incidence, as well as its associated short and long term morbidities2. Here, we comprehensively profiled the gut microbiome, metabolome, inflammatory cytokines, nutrition and clinical records of 394 women during the first trimester of pregnancy. We found elevated levels of proinflammatory serum cytokines in those who later developed GDM. The women’s stool samples were also characterized by decreased levels of several fecal short-chain fatty acids and altered microbiome. We next tested the hypothesis that differences in GDM-associated microbial composition during the first trimester drove inflammation and insulin-resistance. Stool samples collected early in pregnancy from women from three populations who did and did not later develop GDM were transplanted to germ-free mice and confirmed that both inflammation and insulin-resistance are induced by the microbiome of pregnant women more than 10 weeks prior to GDM diagnosis. Following these observations, we used a machine-learning approach to predict GDM based on first trimester clinical, microbial and inflammatory markers. Our model showed high predictive accuracy. Overall, our results suggest that the gut microbiome of women in the first trimester plays a remarkable role in inflammation-induced GDM pathogenesis and point to dozens of GDM markers during the first trimester of pregnancy, some of which may be targets for therapeutic intervention.


2021 ◽  
Author(s):  
Jasmine W Larrick ◽  
Andrew R Mendelsohn ◽  
James Larrick

Sign in / Sign up

Export Citation Format

Share Document