scholarly journals Effect of PBAT on physical, morphological, and mechanical properties of PBS/PBAT foam

2019 ◽  
Vol 39 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Aekartit Boonprasertpoh ◽  
Duanghathai Pentrakoon ◽  
Jirawut Junkasem

This study examines the effect of poly(butylene adipate- co-terephthalate) (PBAT) content on the physical, morphological, and mechanical properties of poly(butylene succinate) (PBS)/PBAT foam. A compression molding technique was used to prepare the PBS/PBAT foam using the chemical blowing agent azodicarbonamide and the cross-linking agent dicumyl peroxide. The chemical structure and morphological properties of PBS/PBAT foam were examined via Fourier transform infrared and scanning electron microscopy techniques, respectively, whereas tensile and flexural properties were investigated using a universal testing machine. The results reveal that the incorporation of PBAT barely enhances the viscosity of the PBS/PBAT blend, producing only minor changes in the average cell size of PBS/PBAT foam. However, increasing the PBAT content contributes to a relatively significant improvement in the flexibility and toughness of PBS/PBAT foam, where a decrease in Young’s modulus and tensile strength of the PBS/PBAT foam is observed compared with those of the PBS foam. Similar behavior to the tensile results is noticed for the flexural properties of the neat and PBS/PBAT foams.

2021 ◽  
pp. 0021955X2098715
Author(s):  
Cosimo Brondi ◽  
Ernesto Di Maio ◽  
Luigi Bertucelli ◽  
Vanni Parenti ◽  
Thomas Mosciatti

This study investigates the effect of liquid-type organofluorine additives (OFAs) on the morphology, thermal conductivity and mechanical properties of rigid polyurethane (PU) and polyisocyanurate (PIR) foams. Foams were characterized in terms of their morphology (density, average cell size, anisotropy ratio, open cell content), thermal conductivity and compressive as well as flexural properties. Based on the results, we observed that OFAs efficiently reduced the average cell size of both PU and PIR foams, leading to improved thermal insulating and mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1303
Author(s):  
Michael Seidenstuecker ◽  
Thomas Schmeichel ◽  
Lucas Ritschl ◽  
Johannes Vinke ◽  
Pia Schilling ◽  
...  

This work aimed to determine the influence of two hydrogels (alginate, alginate-di-aldehyde (ADA)/gelatin) on the mechanical strength of microporous ceramics, which have been loaded with these hydrogels. For this purpose, the compressive strength was determined using a Zwick Z005 universal testing machine. In addition, the degradation behavior according to ISO EN 10993-14 in TRIS buffer pH 5.0 and pH 7.4 over 60 days was determined, and its effects on the compressive strength were investigated. The loading was carried out by means of a flow-chamber. The weight of the samples (manufacturer: Robert Mathys Foundation (RMS) and Curasan) in TRIS solutions pH 5 and pH 7 increased within 4 h (mean 48 ± 32 mg) and then remained constant over the experimental period of 60 days. The determination surface roughness showed a decrease in the value for the ceramics incubated in TRIS compared to the untreated ceramics. In addition, an increase in protein concentration in solution was determined for ADA gelatin-loaded ceramics. The macroporous Curasan ceramic exhibited a maximum failure load of 29 ± 9.0 N, whereas the value for the microporous RMS ceramic was 931 ± 223 N. Filling the RMS ceramic with ADA gelatin increased the maximum failure load to 1114 ± 300 N. The Curasan ceramics were too fragile for loading. The maximum failure load decreased for the RMS ceramics to 686.55 ± 170 N by incubation in TRIS pH 7.4 and 651 ± 287 N at pH 5.0.


2013 ◽  
Vol 833 ◽  
pp. 159-164 ◽  
Author(s):  
Xiu Qian Li ◽  
Hai Peng Qiu ◽  
Jian Jiao

The ZrC/SiC multi-components modified C/C composites were prepared by using a hybrid precursor containning polycarbosilane and organic zirconium-contained polymeric precursor as impregnant and C/C composites of low density as preform. The porosity, microstructure and mechanical properties of samples were characterized with mercury injection apparatus, scanning electron microscopy and universal electron testing machine respectively. The results show that the porosity and average pore diameter decrease firstly and increase subsequently with the increase of organic zirconium content of the precursor. When the content of organic zirconium is 50%, the porosity and average pore diameter reach minimum which were7.27% and 0.0795um respectively. The most probabilistic pore diameter shifted from 10-100um to 1-10um at the same time; Meanwhile, the flexural properties also increases and drops immediately as the content of organic zirconium in the precursor adds. When the content of organic zirconium is 25%, the flexural strength reaches maximum of 245.20MPa.The improved flexural properties is attributed to the proper bonding of fiber-matrix interface and the low porosity of samples.


2019 ◽  
Vol 7 (5) ◽  
pp. 311-320
Author(s):  
Umurhurhu Benjamin ◽  
Uguru Hilary

The mechanical properties of eggplant fruit (cv. Bello) harvested at physiological maturity stage were evaluated in three storage periods (3d, 6d and 9d). These mechanical parameters (rupture force, rupture energy and deformation at rupture point) were measured under quasi compression loading, using the Universal Testing Machine (Testometric model). The fruit’s toughness and rupture power were calculated from the data obtained from the rupture energy and deformation at rupture point. Results obtained showed that mechanical properties of the Bello eggplant fruit exhibited strong dependence on the storage period. The results showed that as the Bello fruit stored longer, its rupture force and rupture energy decreased from 812 N to 411 N, and 5.58 Nm to 3.11 Nm respectively. While the rupture power decreased from 1.095 W to 0.353 W. On the contrary, the toughness and deformation at rupture increased from 0.270 mJ/mm3 to 0.403 mJ/mm3, and 16.99 mm to 25.22mm respectively during the 9 days storage period. The knowledge of the mechanical properties of fruits is important for their harvest and post-harvest operations, therefore, information obtained from this study will be useful in the design and development of machines for the mechanization of eggplant production.


2012 ◽  
Vol 479-481 ◽  
pp. 1145-1150
Author(s):  
Xiao Feng Xu ◽  
Wen Bin Yao ◽  
Jiu Hua Xu ◽  
Wei Zhang

In order to get the physical mechanics of gingko,hickory nut and their stalks, microprocessor controlled electronic universal testing machine (WDW-5E) was used to study the basic physical characteristics,pulling resistance and cutting resistance of their stalk in different harvest time and moisture contents. The impact of physical mechanics of cones and stalks on the picking process were analyzed and some concrete suggestions were put forward in the paper. This experimental study provides an important theory basis on designing and manufacturing different cones picking machine.


2001 ◽  
Vol 9 (5) ◽  
pp. 333-338 ◽  
Author(s):  
Mitsuhiro Shibata ◽  
Retsu Makino ◽  
Ryutoku Yosomiya ◽  
Hiroyuku Takeishi

Poly(butylene succinate) composites reinforced with short sisal fibre were prepared by melt mixing and subsequent injection moulding. The influence of fibre length, fibre content and the surface treatment of the natural fibres on the mechanical properties of the composites were evaluated. Regarding fibre length, the tensile and flexural properties of the composites had maxima at a fibre length of about 5 mm. The flexural and tensile moduli of the composites increased with increasing fibre content. Although the tensile strength hardly changed, the flexural strength increased up to a fibre content of 10 wt%. The dynamic mechanical analysis of the composites showed that the storage moduli at above ca.-16°C (corresponding to the glass transition temperature of the matrix) increased with increasing fibre content.


2019 ◽  
Vol 800 ◽  
pp. 210-215
Author(s):  
Walid Fermas ◽  
Mustapha Kaci ◽  
Remo Merijs Meri ◽  
Janis Zicans

In this paper, the effect of unmodified halloysite nanotubes (HNTs) content on the chemical structure and the thermal and mechanical properties of blends based on starch-grafted-polyethylene (SgP) and high density polyethylene (HDPE) (70/30 w/w) nanocomposites was investigated at various filler content ratios, i.e. 1.5, 3 and 5 wt.%. The study showed the occurrence of chemical interactions between the polymer matrix and HNTs through OH bonding. Further, the addition of HNTs to the polymer blend led to an increase in the crystallization temperature of the nanocomposite samples, in particular at higher filler contents i.e. 3 and 5 wt.%, while the melting temperature remained almost unchanged. Tensile and flexural properties of the nanocomposite samples were however improved compared to the virgin blend with respect to the HNTs content ratio.


2012 ◽  
Vol 624 ◽  
pp. 279-282
Author(s):  
Feng Zhan ◽  
Nan Chun Chen

Talc was modified by aluminate coupling agent (ACA) before filling it into high density polypropylene (HDPP) to prepare talc/HDPP composites. Scanning electron microscopy (SEM), wear testing machine, electronic universal testing machine, and impact testing machine were used to analyze the surface modification and the effects of modified talc on friction and mechanical properties of modified talc/HDPP composites. The results indicate that after modified the lamellar structure of talc particles are open and the dispersion of particles are improved, and the edges and corners of surface become softer. Friction properties indicate that when the talc content is 8 wt%, both µ and K are at a lower value, which show that have better wear resistance. The frictional surface is relatively smooth and no furrow trace has found. Mechanical properties show that with talc content increasing, tensile strength and flexural strength of composites increase.


2017 ◽  
Vol 732 ◽  
pp. 32-37 ◽  
Author(s):  
Ming He Wang ◽  
Xiao Dong Du ◽  
Yu Kun Li ◽  
Zhen Zhang ◽  
Hai Lin Su ◽  
...  

The as-cast microstructures and mechanical properties of Al-Si-Mg-Cu-Ti alloys with and without Sc were investigated by metallographic microscope, field emission scanning electron microscope, energy spectrum analysis, transmission electron microscope and universal testing machine. The result shows that adding 0.20wt.% Sc into the casting alloy can refine the grain, change the growth morphology from dendrite to fine equiaxed grain, and the morphology of eutectic Si by rough laminar structure into fine fibrous. The tensile strength of alloy with 0.20wt.% Sc is up to 304.4 MPa after T6 heat treated, which is close to that of 6061 forging aluminum alloy.


2014 ◽  
Vol 915-916 ◽  
pp. 992-995
Author(s):  
Shuang Liu ◽  
Wei Tan Cui ◽  
Hong Wu Zhang ◽  
Yong Quan Ma

The fracture reasons of 500kV high-voltage disconnectors hoops were analyzed. The fracture appearance, composition of chemical elements, metallographic, mechanical properties of the fractured hoops were investigated by ICP-AES, SEM, optical microscope, brinell hardness tester, universal testing machine. The test results that one reason is substandard products of this batch hoop. The composition of chemical elements and mechanical properties is fails to comply with applicable standards prescribed and the casting defects are found. Another reason is that the large pre-tightening force and tightens reverse order.


Sign in / Sign up

Export Citation Format

Share Document