scholarly journals Experimental and numerical investigation of the effect of interlayer on the damage formation in a ceramic/composite armor at a low projectile velocity

2016 ◽  
Vol 30 (1) ◽  
pp. 88-106 ◽  
Author(s):  
A Tasdemirci ◽  
G Tunusoglu

The damage formation in a multilayered armor system without and with an interlayer (rubber, Teflon, and aluminum foam) between the front face ceramic layer and the composite backing plate were investigated experimentally and numerically. The projectile impact tests were performed in a low-velocity projectile impact test system and the numerical studies were implemented using the nonlinear finite element code LS-DYNA. The results of numerical simulations showed that the stress wave transmission to the composite backing plate decreased significantly in Teflon and foam interlayer armor configurations. Similar to without interlayer configuration, the rubber interlayer configuration led to the passage of relatively high stress waves to the composite backing plate. This was mainly attributed to the increased rubber interlayer impedance during the impact event. The numerical results of reduced stress wave transmission to the backing plate and the increased damage formation in the ceramic front face layer with the use of Teflon and foam interlayer was further confirmed experimentally.

2014 ◽  
Vol 624 ◽  
pp. 267-271
Author(s):  
Zhu Hua Tan ◽  
Bo Zhang ◽  
Peng Cheng Zhai

The dynamic response of the square tube subjected to the impact of a mass was investigated by using experimental and numerical methods. The square tube was impacted by a mass at the velocity ranging from 5.09 m/s to 12.78 m/s, and different progressive buckling modes were obtained. The numerical simulation was also carried out to analyze the buckling mechanism of the square tube. The results show that there is obvious stress wave propagation and strain localization in the tube, which has a significant influence on the buckling mechanism of the tube. The stress wave and inertia of the mass play different roles at various impact velocities. And buckling mechanism at low velocity is mainly caused by stress wave, whereas the buckling mechanism at high velocity is resulted from the inertial of the mass.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 18
Author(s):  
Pawel Zochowski ◽  
Marcin Bajkowski ◽  
Roman Grygoruk ◽  
Mariusz Magier ◽  
Wojciech Burian ◽  
...  

This article presents an analysis of the effectiveness of available numerical techniques in mapping the characteristic behavior of ballistic ceramics under projectile impact conditions. As part of the work, the ballistic tests were performed on the layered ceramic/steel composite armor and tested with the 7.62 × 39 mm, armor-piercing incendiary (API) BZ projectile. The experimental tests were then mapped using computer simulations. In numerical analyses, four different techniques were used to describe cubic ceramic tiles Al2O3 placed on the ARMOX 500T steel backing plate, i.e.,: the Finite Element Method without Erosion (FEM), Finite Element with erosion (FEM + Erosion), Smoothed Particles Hydrodynamics (SPH) and a hybrid method that converts finite elements to SPH particles after exceeding the defined failure criteria (FEM to SPH conversion). The effectiveness of the individual methods was compared in terms of quality (mapping of characteristic phenomena occurring during the penetration process), quantity (bulge height of the backing plate) and time needed to complete the calculations. On the basis of the results of the experiments and numerical simulations, it was noticed that the most accurate reproduction of the phenomenon of ballistic impact of AP projectiles on ceramic/steel composite armor can be obtained by using a hybrid method, incorporating the conversion of finite elements into SPH particles. This method should be used in cases where accuracy of the results is more important than the time required to complete the calculations. In other situations where the purpose of the calculation is not to determine, for example, the exact value of penetration depth but only to observe a certain trend, the FEM method with defined erosion criteria (variant 2), which is more than 10 times faster, can be successfully used.


Author(s):  
Shah Alam ◽  
Samhith Shakar

Abstract This study focused on the design, modelling and the analysis of the dynamic response of composite armor system, constructed with Kevlar 29 as front skin, Alumina-ceramic filled in x shaped corrugated structure as core and bottom skin Kevlar 29 and T800S, in terms of residual velocity, energy absorption capacity and limiting velocity. The core cell size, height, thickness, skin thickness, etc., will be varied to get their influence on the impact resistance. The design parameter will be investigated for the sandwich composite armor with various configurations and stacking sequence of Alumina Ceramics, Kevlar 29 and T800S. The sandwich typically consists of front plate, core and backing plate, which will be impacted at different velocities starting at 100m/s till significant armor penetration. The ballistic limit velocity (V50) will be determined from the analysis. The non-linear explicit dynamic analysis and simulation results computed using the software ABAQUS will be validated by experiment. From the data obtained it can be suggested which composite armor has improved impact resistance and performance.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1355-1360
Author(s):  
SUJIN PARK ◽  
MOONSAENG KIM ◽  
WOOK DOKKO

Steel plates subjected to low velocity impact were numerically analyzed, and physically tested. The impactor has hemispheric tip nose, and the square plate has four fixed edges. Mindlin plate theory and Hertz contact law were used for the formulation of the impact problem, and some numerical treatments for the reduced integration, Newmark time integration scheme, associative flow rule, and plastic hardening were appropriately applied. A simple and efficient analysis program for plate impact was generated, and the results were compared with those of physical impact experiments. A drop test system was installed, and the impact behavior was measured with sensors. The comparison showed reasonable results, and the main parameters of plate impact were also analyzed.


Author(s):  
Haifu Yang ◽  
Yuansheng Cheng ◽  
Pan Zhang ◽  
Jun Liu ◽  
Kai Chen

Sandwich structures with corrugated cores have attracted a lot of interest from industrial and academic fields due to their superior crashworthiness. In this paper, the dynamic response of metallic trapezoidal corrugated core sandwich panels under low-velocity impact loading is studied by conducting drop hammer impact testing. The sandwich panels composed of two thin face skins and trapezoidal corrugated core, were designed and fabricated through folding and laser welding technology. Main attention of present study was placed at the influences of the impact energy, impactor diameter and impact location on the impact force, deformation mechanisms and the permanent deflections of the trapezoidal corrugated core sandwich panels. Results revealed that the impact energy has significant effects on the dynamic response of the sandwich panel, whereas the impact diameter has little effects on it. The deformation mode of the front face sheet differs sharply when the impact location is different. The middle unit cell of corrugated core is compressed to the “M” shape under different low-velocity impact loading.


2021 ◽  
pp. 105678952110365
Author(s):  
Zhongxiang Pan ◽  
Mingling Wang ◽  
Zhiping Ying ◽  
Xiaoying Cheng ◽  
Zhenyu Wu

Failure mechanism of complex profile component is always different from that of conventional plate counterpart due to the coupling effect of material and structure. In this work, the low-velocity impact (LVI) and compression after impact (CAI) behaviors of Ω-shape hybrid carbon/Kevlar 3 D orthogonal woven (3DOW) composite made for vehicle B-pillar were comprehensively studied by mechanical tests and mesoscale finite element (FE) analysis at component level, high-speed infrared (IR) thermal imaging, acoustic emission (AE) detection, and microscopic damage morphology characterization. It is found that a through-thickness stress concentration ring leads to high stress state and damage zone penetrating from the impact side to non-impact side along the ring path instead of at the lowest impactor position. The slope effect can not only help the stress conduction downward, but also inhibit the damage propagation from the impact side to the slope. Impact-induced cracks are concentrated around the R corners and extended along the axial direction of the specimen, forming the strip-shaped damage concentration zone along the upper eave of the slope. The Progressive Top-Down Crushing (PTDC) mode of compression after impact is due to the complex deformation process of each yarn such as squeezing, folding and eversion in the crushing process from the top of specimen. And the Middle Indentation Fracture (MIF) mode is the result of bending instability and abrupt fracture. This work presents a reference significance for the further development of composite strengthening components in vehicle bodywork.


Author(s):  
Brahmananda Pramanik ◽  
P. Raju Mantena

Focus of our research is on developing stronger, safer and more cost-effective structures for the new generation naval ships; especially nanoparticle reinforced glass/carbon polymeric based composites and structural foams for blast/shock/impact mitigation. Punch-shear test at low velocity impact is significant for mechanical characterization. Gama et al. [1] performed QS-PST experimental methodology to define elastic energy and absorbed energies of composites as a function of penetration displacement. This paper describes the punch-shear response of nanoparticle reinforced vinyl ester plates, laminated face sheets and sandwich composites using Dynatup 8250 drop-weight impact test system according to ASTM D3763 Standard [2]. Low-velocity tests were performed on 4″ × 4″ square plate specimens with fixed circular boundary condition and impacted by a hemispherical-head plunger with added mass. The impact load, displacement, energy plots and visual inspection of the post damaged specimens depicted the failure characteristics and punch shear response of these composites.


2016 ◽  
Vol 19 (5) ◽  
pp. 595-615 ◽  
Author(s):  
Xin Li ◽  
Shiqiang Li ◽  
Zhihua Wang ◽  
Jinglei Yang ◽  
Guiying Wu

The paper studied the dynamic response of square aluminum corrugated sandwich panels under projectile impact. The aluminum foam projectile was utilized to apply the impulse on the sandwich panels. In order to increase the applied impulse under controlled impact velocity ( V < 200 m/s), a cylindrical Nylon mass was adhered to the back of foam projectile. Corrugated sandwich panels with two different configurations were tested and their typical deformation modes were obtained in the experiment. Based on the experiment, corresponding numerical simulations were presented. The energy absorption and deformation mechanism of corrugated sandwich panels were studied through the simulation. The influence of impact velocity, thickness of face sheet and wall thickness of corrugated core were discussed. The results indicated that the corrugated sandwich panels with smaller core height produce larger deformation than the panels with larger core height. The face sheets of corrugated sandwich panel absorbed comparable amount of energy with the corrugated core. The velocity histories show that under the combined action of aluminum foam projectile and nylon back mass, a second peak velocity of front face sheet can be produced during the impact process, which is defined as “accelerating impact stage” in current study. The influence of “accelerating impact stage” to the response of structures is sensitive to the impact velocity.


2020 ◽  
Vol 26 ◽  
Author(s):  
Shabana Bibi ◽  
Ayesha Sarfraz ◽  
Ghazala Mustafa ◽  
Zeeshan Ahmed ◽  
Muhammad Aurang Zeb ◽  
...  

Background: Coronavirus Disease-2019 belongs to the family of viruses which cause a serious pneumonia along with fever, breathing issues and infection of lungs for the first time in China and later spread worldwide. Objective: Several studies and clinical trials have been conducted to identify potential drugs and vaccines for Coronavirus Disease-2019. The present study listed natural secondary metabolites identified from plant sources with antiviral properties and could be safer and tolerable treatment for Coronavirus Disease-2019. Methods: A comprehensive search on the reported studies was conducted using different search engine such as Google scholar, SciFinder, Sciencedirect, Medline PubMed, and Scopus for the collection of research articles based on plantderived secondary metabolites, herbal extracts, and traditional medicine for coronavirus infections. Results: Status of COVID-19 worldwide and information of important molecular targets involved in COVID-19 is described and through literature search, is highlighted that numerous plant species and their extracts possess antiviral properties and studied with respect to Coronavirus treatments. Chemical information, plant source, test system type with mechanism of action for each secondary metabolite is also mentioned in this review paper. Conclusion: The present review has listed plants that have presented antiviral potential in the previous coronavirus pandemics and their secondary metabolites which could be significant for the development of novel and a safer drug which could prevent and cure coronavirus infection worldwide.


2019 ◽  
Vol 11 (02) ◽  
pp. 1950019 ◽  
Author(s):  
Lin Gan ◽  
He Zhang ◽  
Cheng Zhou ◽  
Lin Liu

Rotating scanning motor is the important component of synchronous scanning laser fuze. High emission overload environment in the conventional ammunition has a serious impact on the reliability of the motor. Based on the theory that the buffer pad can attenuate the impact stress wave, a new motor buffering Isolation Method is proposed. The dynamical model of the new buffering isolation structure is established by ANSYS infinite element analysis software to do the nonlinear impact dynamics simulation of rotating scanning motor. The effectiveness of Buffering Isolation using different materials is comparatively analyzed. Finally, the Macht hammer impact experiment is done, the results show that in the experience of the 70,000[Formula: see text]g impact acceleration, the new buffering Isolation method can reduce the impact load about 15 times, which can effectively alleviate the plastic deformation of rotational scanning motor and improve the reliability of synchronization scanning system. A new method and theoretical basis of anti-high overload research for Laser Fuze is presented.


Sign in / Sign up

Export Citation Format

Share Document