A machine learning damage prediction model for the 2017 Puebla-Morelos, Mexico, earthquake

2020 ◽  
Vol 36 (2_suppl) ◽  
pp. 314-339
Author(s):  
Samuel Roeslin ◽  
Quincy Ma ◽  
Hugon Juárez-Garcia ◽  
Alonso Gómez-Bernal ◽  
Joerg Wicker ◽  
...  

The 2017 Puebla, Mexico, earthquake event led to significant damage in many buildings in Mexico City. In the months following the earthquake, civil engineering students conducted detailed building assessments throughout the city. They collected building damage information and structural characteristics for 340 buildings in the Mexico City urban area, with an emphasis on the Roma and Condesa neighborhoods where they assessed 237 buildings. These neighborhoods are of particular interest due to the availability of seismic records captured by nearby recording stations, and preexisting information from when the neighborhoods were affected by the 1985 Michoacán earthquake. This article presents a case study on developing a damage prediction model using machine learning. It details a framework suitable for working with future post-earthquake observation data. Four algorithms able to perform classification tasks were trialed. Random forest, the best performing algorithm, achieves more than 65% prediction accuracy. The study of the feature importance for the random forest shows that the building location, seismic demand, and building height are the parameters that influence the model output the most.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Changhyun Choi ◽  
Jeonghwan Kim ◽  
Jongsung Kim ◽  
Donghyun Kim ◽  
Younghye Bae ◽  
...  

Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in the Republic of Korea. We used data on the occurrence of heavy rain damage from 1994 to 2015 as dependent variables and weather big data as explanatory variables. The model was developed by applying machine learning techniques such as decision trees, bagging, random forests, and boosting. As a result of evaluating the prediction performance of each model, the AUC value of the boosting model using meteorological data from the past 1 to 4 days was the highest at 95.87% and was selected as the final model. By using the prediction model developed in this study to predict the occurrence of heavy rain damage for each administrative region, we can greatly reduce the damage through proactive disaster management.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2516 ◽  
Author(s):  
Changhyun Choi ◽  
Jeonghwan Kim ◽  
Jungwook Kim ◽  
Hung Soo Kim

Adequate forecasting and preparation for heavy rain can minimize life and property damage. Some studies have been conducted on the heavy rain damage prediction model (HDPM), however, most of their models are limited to the linear regression model that simply explains the linear relation between rainfall data and damage. This study develops the combined heavy rain damage prediction model (CHDPM) where the residual prediction model (RPM) is added to the HDPM. The predictive performance of the CHDPM is analyzed to be 4–14% higher than that of HDPM. Through this, we confirmed that the predictive performance of the model is improved by combining the RPM of the machine learning models to complement the linearity of the HDPM. The results of this study can be used as basic data beneficial for natural disaster management.


2021 ◽  
Vol 8 ◽  
Author(s):  
Guan Wang ◽  
Yanbo Zhang ◽  
Sijin Li ◽  
Jun Zhang ◽  
Dongkui Jiang ◽  
...  

Objective: Preeclampsia affects 2–8% of women and doubles the risk of cardiovascular disease in women after preeclampsia. This study aimed to develop a model based on machine learning to predict postpartum cardiovascular risk in preeclamptic women.Methods: Collecting demographic characteristics and clinical serum markers associated with preeclampsia during pregnancy of 907 preeclamptic women retrospectively, we predicted the cardiovascular risk (ischemic heart disease, ischemic cerebrovascular disease, peripheral vascular disease, chronic kidney disease, metabolic system disease or arterial hypertension). The study samples were divided into training sets and test sets randomly in the ratio of 8:2. The prediction model was developed by 5 different machine learning algorithms, including Random Forest. 10-fold cross-validation was performed on the training set, and the performance of the model was evaluated on the test set.Results: Cardiovascular disease risk occurred in 186 (20.5%) of these women. By weighing area under the curve (AUC), the Random Forest algorithm presented the best performance (AUC = 0.711[95%CI: 0.697–0.726]) and was adopted in the feature selection and the establishment of the prediction model. The most important variables in Random Forest algorithm included the systolic blood pressure, Urea nitrogen, neutrophil count, glucose, and D-Dimer. Random Forest algorithm was well calibrated (Brier score = 0.133) in the test group, and obtained the highest net benefit in the decision curve analysis.Conclusion: Based on the general situation of patients and clinical variables, a new machine learning algorithm was developed and verified for the individualized prediction of cardiovascular risk in post-preeclamptic women.


2021 ◽  
Vol 8 (3) ◽  
pp. 209-221
Author(s):  
Li-Li Wei ◽  
Yue-Shuai Pan ◽  
Yan Zhang ◽  
Kai Chen ◽  
Hao-Yu Wang ◽  
...  

Abstract Objective To study the application of a machine learning algorithm for predicting gestational diabetes mellitus (GDM) in early pregnancy. Methods This study identified indicators related to GDM through a literature review and expert discussion. Pregnant women who had attended medical institutions for an antenatal examination from November 2017 to August 2018 were selected for analysis, and the collected indicators were retrospectively analyzed. Based on Python, the indicators were classified and modeled using a random forest regression algorithm, and the performance of the prediction model was analyzed. Results We obtained 4806 analyzable data from 1625 pregnant women. Among these, 3265 samples with all 67 indicators were used to establish data set F1; 4806 samples with 38 identical indicators were used to establish data set F2. Each of F1 and F2 was used for training the random forest algorithm. The overall predictive accuracy of the F1 model was 93.10%, area under the receiver operating characteristic curve (AUC) was 0.66, and the predictive accuracy of GDM-positive cases was 37.10%. The corresponding values for the F2 model were 88.70%, 0.87, and 79.44%. The results thus showed that the F2 prediction model performed better than the F1 model. To explore the impact of sacrificial indicators on GDM prediction, the F3 data set was established using 3265 samples (F1) with 38 indicators (F2). After training, the overall predictive accuracy of the F3 model was 91.60%, AUC was 0.58, and the predictive accuracy of positive cases was 15.85%. Conclusions In this study, a model for predicting GDM with several input variables (e.g., physical examination, past history, personal history, family history, and laboratory indicators) was established using a random forest regression algorithm. The trained prediction model exhibited a good performance and is valuable as a reference for predicting GDM in women at an early stage of pregnancy. In addition, there are certain requirements for the proportions of negative and positive cases in sample data sets when the random forest algorithm is applied to the early prediction of GDM.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261433
Author(s):  
Hantai Kim ◽  
JaeYeon Park ◽  
Yun-Hoon Choung ◽  
Jeong Hun Jang ◽  
JeongGil Ko

Diagnostic tests for hearing impairment not only determines the presence (or absence) of hearing loss, but also evaluates its degree and type, and provides physicians with essential data for future treatment and rehabilitation. Therefore, accurately measuring hearing loss conditions is very important for proper patient understanding and treatment. In current-day practice, to quantify the level of hearing loss, physicians exploit specialized test scores such as the pure-tone audiometry (PTA) thresholds and speech discrimination scores (SDS) as quantitative metrics in examining a patient’s auditory function. However, given that these metrics can be easily affected by various human factors, which includes intentional (or accidental) patient intervention, there are needs to cross validate the accuracy of each metric. By understanding a “normal” relationship between the SDS and PTA, physicians can reveal the need for re-testing, additional testing in different dimensions, and also potential malingering cases. For this purpose, in this work, we propose a prediction model for estimating the SDS of a patient by using PTA thresholds via a Random Forest-based machine learning approach to overcome the limitations of the conventional statistical (or even manual) methods. For designing and evaluating the Random Forest-based prediction model, we collected a large-scale dataset from 12,697 subjects, and report a SDS level prediction accuracy of 95.05% and 96.64% for the left and right ears, respectively. We also present comparisons with other widely-used machine learning algorithms (e.g., Support Vector Machine, Multi-layer Perceptron) to show the effectiveness of our proposed Random Forest-based approach. Results obtained from this study provides implications and potential feasibility in providing a practically-applicable screening tool for identifying patient-intended malingering in hearing loss-related tests.


2021 ◽  
Vol 12 (10) ◽  
pp. 7488-7496
Author(s):  
Yusuf Aliyu Adamu, Et. al.

Measures have been taking to ensure the safety of individuals from the burden of vector-borne disease but it remains the causative agent of death than any other diseases in Africa. Many human lives are lost particularly of children below five years regardless of the efforts made. The effect of malaria is much more challenging mostly in developing countries. In 2019, 51% of malaria fatality happen in Africa which it increased by 20% in 2020 due to the covid-19 pandemic. The majority of African countries lack a proper or a sound health care system, proper environmental settlement, economic hardship, limited funding in the health sector, and absence of good policies to ensure the safety of individuals. Information has to become available to the peoples on the effect of malaria by making public awareness program to make sure people become acquainted with the disease so that certain measure can be maintained. The prediction model can help the policymakers to know more about the expected time of the malaria occurrence based on the existing features so that people will get to know the information regarding the disease on time, health equipment and medication to be made available by government through it policy. In this research weather condition, non-climatic features, and malaria cases are considered in designing the model for prediction purposes and also the performance of six different machine learning classifiers for instance Support Vector Machine, K-Nearest Neighbour, Random Forest, Decision Tree, Logistic Regression, and Naïve Bayes is identified and found that Random Forest is the best with accuracy (97.72%), AUC (98%) AUC, and (100%) precision based on the data set used in the analysis.  


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4512
Author(s):  
Junqi Guo ◽  
Lan Yang ◽  
Anton Umek ◽  
Rongfang Bie ◽  
Sašo Tomažič ◽  
...  

In the military, police, security companies, and shooting sports, precision shooting training is of the outmost importance. In order to achieve high shooting accuracy, a lot of training is needed. As a result, trainees use a large number of cartridges and a considerable amount of time of professional trainers, which can cost a lot. Our motivation is to reduce costs and shorten training time by introducing an augmented biofeedback system based on machine learning techniques. We are designing a system that can detect and provide feedback on three types of errors that regularly occur during a precision shooting practice: excessive hand movement error, aiming error and triggering error. The system is designed to provide concurrent feedback on the hand movement error and terminal feedback on the other two errors. Machine learning techniques are used innovatively to identify hand movement errors; the other two errors are identified by the threshold approach. To correct the excessive hand movement error, a precision shot accuracy prediction model based on Random Forest has proven to be the most suitable. The experimental results show that: (1) the proposed Random Forest (RF) model achieves the prediction accuracy of 91.27%, higher than any of the other reference models, and (2) hand movement is strongly related to the accuracy of precision shooting. Appropriate use of the proposed augmented biofeedback system will result in a lower number of rounds used and shorten the precision shooting training process.


2021 ◽  
Vol 11 (7) ◽  
pp. 2897
Author(s):  
Byung-Chul Kim ◽  
Jingyu Kim ◽  
Ilhan Lim ◽  
Dong Ho Kim ◽  
Sang Moo Lim ◽  
...  

Breast cancer metastasis can have a fatal outcome, with the prediction of metastasis being critical for establishing effective treatment strategies. RNA-sequencing (RNA-seq) is a good tool for identifying genes that promote and support metastasis development. The hub gene analysis method is a bioinformatics method that can effectively analyze RNA sequencing results. This can be used to specify the set of genes most relevant to the function of the cell involved in metastasis. Herein, a new machine learning model based on RNA-seq data using the random forest algorithm and hub genes to estimate the accuracy of breast cancer metastasis prediction. Single-cell breast cancer samples (56 metastatic and 38 non-metastatic samples) were obtained from the Gene Expression Omnibus database, and the Weighted Gene Correlation Network Analysis package was used for the selection of gene modules and hub genes (function in mitochondrial metabolism). A machine learning prediction model using the hub gene set was devised and its accuracy was evaluated. A prediction model comprising 54-functional-gene modules and the hub gene set (NDUFA9, NDUFB5, and NDUFB3) showed an accuracy of 0.769 ± 0.02, 0.782 ± 0.012, and 0.945 ± 0.016, respectively. The test accuracy of the hub gene set was over 93% and that of the prediction model with random forest and hub genes was over 91%. A breast cancer metastasis dataset from The Cancer Genome Atlas was used for external validation, showing an accuracy of over 91%. The hub gene assay can be used to predict breast cancer metastasis by machine learning.


Author(s):  
Khaled Alrifai ◽  
Ghaida Rebdawi ◽  
Nada Ghneim

In this paper, we present our approach for profiling Arabic authors on twitter, based on their tweets. We consider here the dialect of an Arabic author as an important trait to be predicted. For this purpose, many indicators, feature vectors and machine learning-based classifiers were implemented. The results of these classifiers were compared to find out the best dialect prediction model. The best dialect prediction model was obtained using random forest classifier with full forms and their stems as feature vector.


2021 ◽  
Vol 309 ◽  
pp. 01043
Author(s):  
L. Chandrika ◽  
K. Madhavi

Cardiovascular Diseases (CVDs) are the primary cause for the sudden death in the world today from the past few years the disease has emerged greatly as a most unpredictable problem, not only in India the whole planet facing the criticality. So, there is a desperate need of valid, accurate and practical solution or application to diagnose the CVD problems in time for mandatory treatment. Predicting the CVD is a great challenge in the health care domain of clinical data analysis. Machine learning Algorithms (MLA) and Techniques has been vastly developed and proven to be effective and efficient in predicting the problems using the past data. Using these MLA techniques and taking the clinical dataset which provided by the healthcare industry. Different studies were takes place and tried only a small part into predicting CVD with ML Algorithms. In this thesis, we propose the different novel methodology which concentrates at finding appropriate features by using MLA techniques resulting at finding out the accurate model to predict CVD. In this prediction model we are trying to implement the models with different combinations of features and several known classification techniques such as Deep Learning, Random Forest, Generalised Linear Model, Naïve Bayes, Logistic Regression, Decision Tree, Gradient Boosted trees, Support Vector Machine, Vote and HRFLM and we have got an higher accuracy level and of 75.8%, 85.1%, 82.9%, 87.4%, 85%, 86.1%, 78.3%, 86.1%, 87.41%, and 88.4% through the prediction model for heart disease with the hybrid random forest with a linear model (HRFLM).


Sign in / Sign up

Export Citation Format

Share Document