scholarly journals Essential Drug Targets and Pathways in PI-Resistant MM Cells

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1577-1577
Author(s):  
Andrej Besse ◽  
Lenka Besse ◽  
Lorina Büchler ◽  
Sara C. Stolze ◽  
Amin Sobh ◽  
...  

Abstract Background Proteasome inhibitors (PI) have emerged as a powerful, cell biology-based treatment option for multiple myeloma (MM) and build a central backbone for MM treatment with three proteasome-inhibiting drugs currently approved: bortezomib (BTZ), carfilzomib (CFZ) and ixazomib. However, despite the high anti-MM activity of PI, MM cells adapt to the selective pressure of PI treatment in most cases to date and most MM patients relapse during or after treatment with PI, develop PI-refractory disease and ultimately die. Therefore, understanding and overcoming PI resistance is a key challenge for MM therapy. Our previous in vitro studies on PI-resistant MM suggest that PI-adapted, MM cells show very distinct features of general metabolism and cell biology that differentiate them from PI-sensitive MM, derived from the same cell line. We hypothesize that this highly specialized and adapted nature of PI-resistant MM offers novel areas of vulnerability, that differ from the therapeutic targets in PI-sensitive MM. The aim of our study was to identify essential drug targets and pathways in PI-resistant MM using genome-wide functional screening with the CRISPR/Cas9 system that could serve as novel therapeutic targets in PI-resistant MM. Methods We used genome-wide CRISPR/Cas9-based loss-of-function screening with Brunello library in L363-BTZ and RPMI-8226-BTZ cells, adapted to grow in the presence of 90 nM BTZ. The overlapping bortezomib genetic sensitivity candidates were further validated in the set of BTZ-resistant cells (L363-BTZ, RPMI-8226-BTZ, MM1S-BTZ and AMO-BTZ) cells using shRNA silencing or single-gene specific knockout or genetic overexpression using CCK8 viability assay. Subsequent functional analysis of the highest ranking BTZ sensitivity candidates in BTZ-adapted cells included apoptosis and cell cycle analysis, qPCR and western blotting, SILAC, proteasome activity determination using activity-based probes and FRAP analysis. Results CRISPR/Cas9-screening identified two candidate genes for BTZ sensitivity, ECPAS (KIAA0368; Ecm29 Proteasome Adaptor and Scaffold protein) and PSME1 (an 11S regulator complex subunit), as consistent screening hits in two independent BTZ-adapted MM cell lines. Both genes are related to proteasome, but do not build the proteasome core particle and do not have a proteolytic activity. Specific knock-down or knock-out of ECPAS sensitized PI-naïve cells to BTZ and CFZ, while significantly more sensitizing BTZ-adapted cells to both PI. Likewise, overexpression of PSMF1, an inhibitor of 11S regulator complex, sensitized BTZ-resistant as well as sensitive cells to BTZ. ECPAS-depleted BTZ-adapted cells showed accumulation of poly-ubiquitinated proteasome substrate proteins, induction of the unfolded protein response, cell cycle arrest and induction of apoptosis, together with changes in protein synthesis after the treatment with 50 nM bortezomib, in contrast to BTZ-adapted control cells. FRAP analysis of cells with GFP-tagged PSMD6 revealed that the intracellular mobility of proteasomes in ECPAS-depleted cells was reduced. Importantly, proteasome activity determined by activity-based probes was not impaired in ECPAS-depleted cells. Conclusion In conclusion, BTZ-resistant MM cells uniquely show a high dependency on the proteasome adaptor and scaffold protein ECPAS, which has been shown to be involved in coupling of proteasome in different compartments and promotes proteasome dissociation under oxidative stress. Specifically in PI-resistant MM, ECPAS is important to ensure functional proteasome, is involved in controlling the intracellular mobility of proteasomes, likely to ensure high proteasome turnover. ECPAS therefore represents a novel candidate that may be targeted to specifically re-sensitize PI-resistant MM cells to proteasome inhibitor treatment. Disclosures No relevant conflicts of interest to declare.

2021 ◽  
pp. 247553032110260
Author(s):  
Audrey Bui ◽  
Jared Liu ◽  
Julie Hong ◽  
Edward Hadeler ◽  
Megan Mosca ◽  
...  

Background: Despite numerous genome-wide association studies conducted in psoriasis and psoriatic arthritis, only a small fraction of the identified genes has been therapeutically targeted. Objective: We sought to identify and analyze potential therapeutic targets for psoriasis and psoriatic arthritis (PsA) using the priority index (Pi), a genetics-dependent drug target prioritization approach. Methods: Significant genetic variants from GWAS for psoriasis, PsA, and combined psoriatic disease were annotated and run through the Pi pipeline. Potential drug targets were identified based on genomic predictors, annotation predictors, pathway enrichment, and pathway crosstalk. Results: Several gene targets were identified for psoriasis and PsA that demonstrated biological associations to their respective diseases. Some are currently being explored as potential therapeutic targets (i.e. ICAM1, NF-kB, REV3 L, ADRA1B for psoriasis; CCL11 for PsA); others have not yet been investigated (i.e. LNPEP, LCE3 for psoriasis; UBLCP1 for PsA). Additionally, many nodal points of potential intervention were identified as promising therapeutic targets. Of these, some are currently being studied such as TYK2 for psoriasis, and others have yet to be explored (i.e. PPP2CA, YAP1, PI3 K, AKT, FOXO1, RELA, CSF2, IFNGR1, IFNGR2 for psoriasis; GNAQ, PLCB1, GNAI2 for PsA). Conclusion: Through Pi, we identified data-driven candidate therapeutic gene targets and pathways for psoriasis and PsA. Given the sparse PsA specific genetic studies and PsA specific drug targets, this analysis could prove to be particularly valuable in the pipeline for novel psoriatic therapies.


Author(s):  
Jane Jialu Xu ◽  
Alistair M Chalk ◽  
Iva Nikolic ◽  
Kaylene Simpson ◽  
Monique F Smeets ◽  
...  

Current strategies to target RNA splicing mutant myeloid cancers proposes targeting the remaining splicing apparatus. This approach has only been modestly sensitizing and is also toxic to non-mutant bearing wild-type cells. To explore potentially exploitable genetic interactions with spliceosome mutations, we combined data mining and functional screening for synthetic lethal interactions with an Srsf2P95H/+ mutation. Analysis of mis-splicing events in a series of both human and murine SRSF2P95H mutant samples across multiple myeloid diseases (AML, MDS, CMML) was performed to identify conserved mis-splicing events. From this analysis, we identified that the cell cycle and DNA repair pathways were overrepresented within the conserved mis-spliced transcript sets. In parallel, to functionally define pathways essential for survival and proliferation of Srsf2P95H/+ cells, we performed a genome-wide CRISPR loss of function screen using Hoxb8 immortalized R26-CreERki/+ Srsf2P95H/+ and R26-CreERki/+ Srsf2+/+ cell lines. We assessed loss of sgRNA representation at three timepoints: immediately after Srsf2P95H/+ activation, and at one week and two weeks post Srsf2P95H/+ mutation. Pathway analysis demonstrated that the cell cycle and DNA damage response pathways were amongst the top synthetic lethal pathways with Srsf2P95H/+ mutation. Based on the loss of guide RNAs targeting Cdk6, we identified that Palbociclib, a CDK6 inhibitor, showed preferential sensitivity in Srsf2P95H/+ cell lines and in primary non-immortalized lin-cKIT+Sca-1+ cells compared to wild type controls. Our data strongly suggest that the cell cycle and DNA damage response pathways are required for Srsf2P95H/+ cell survival, and that Palbociclib could be an alternative therapeutic option for targeting SRSF2 mutant cancers.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1365-D1372 ◽  
Author(s):  
Lisa Dwane ◽  
Fiona M Behan ◽  
Emanuel Gonçalves ◽  
Howard Lightfoot ◽  
Wanjuan Yang ◽  
...  

Abstract CRISPR genetic screens in cancer cell models are a powerful tool to elucidate oncogenic mechanisms and to identify promising therapeutic targets. The Project Score database (https://score.depmap.sanger.ac.uk/) uses genome-wide CRISPR–Cas9 dropout screening data in hundreds of highly annotated cancer cell models to identify genes required for cell fitness and prioritize novel oncology targets. The Project Score database currently allows users to investigate the fitness effect of 18 009 genes tested across 323 cancer cell models. Through interactive interfaces, users can investigate data by selecting a specific gene, cancer cell model or tissue type, as well as browsing all gene fitness scores. Additionally, users can identify and rank candidate drug targets based on an established oncology target prioritization pipeline, incorporating genetic biomarkers and clinical datasets for each target, and including suitability for drug development based on pharmaceutical tractability. Data are freely available and downloadable. To enhance analyses, links to other key resources including Open Targets, COSMIC, the Cell Model Passports, UniProt and the Genomics of Drug Sensitivity in Cancer are provided. The Project Score database is a valuable new tool for investigating genetic dependencies in cancer cells and the identification of candidate oncology targets.


2019 ◽  
Vol 19 (4) ◽  
pp. 473-486 ◽  
Author(s):  
Katarzyna Bednarska-Szczepaniak ◽  
Damian Krzyżanowski ◽  
Magdalena Klink ◽  
Marek Nowak

Background: Adenosine released by cancer cells in high amounts in the tumour microenvironment is one of the main immunosuppressive agents responsible for the escape of cancer cells from immunological control. Blocking adenosine receptors with adenosine analogues and restoring immune cell activity is one of the methods considered to increase the effectiveness of anticancer therapy. However, their direct effects on cancer cell biology remain unclear. Here, we determined the effect of adenosine analogues on the response of cisplatinsensitive and cisplatin-resistant ovarian cancer cells to cisplatin treatment. Methods: The effects of PSB 36, DPCPX, SCH58261, ZM 241385, PSB603 and PSB 36 on cisplatin cytotoxicity were determined against A2780 and A2780cis cell lines. Quantification of the synergism/ antagonism of the compounds cytotoxicity was performed and their effects on the cell cycle, apoptosis/necrosis events and cisplatin incorporation in cancer cells were determined. Results: PSB 36, an A1 receptor antagonist, sensitized cisplatin-resistant ovarian cancer cells to cisplatin from low to high micromolar concentrations. In contrast to PSB 36, the A2AR antagonist ZM 241385 had the opposite effect and reduced the influence of cisplatin on cancer cells, increasing their resistance to cisplatin cytotoxicity, decreasing cisplatin uptake, inhibiting cisplatin-induced cell cycle arrest, and partly restoring mitochondrial and plasma membrane potentials that were disturbed by cisplatin. Conclusion: Adenosine analogues can modulate considerable sensitivity to cisplatin of ovarian cancer cells resistant to cisplatin. The possible direct beneficial or adverse effects of adenosine analogues on cancer cell biology should be considered in the context of supportive chemotherapy for ovarian cancer.


2020 ◽  
Vol 01 ◽  
Author(s):  
Ayşe Mine Yılmaz ◽  
Gökhan Biçim ◽  
Kübra Toprak ◽  
Betül Karademir Yılmaz ◽  
Irina Milisav ◽  
...  

Background: Different cellular responses influence the progress of cancer. In this study, we have investigated the effect of hydrogen peroxide and quercetin induced changes on cell viability, apoptosis and oxidative stress in human hepatocellular carcinoma (HepG2) cells. Methods: The effects of hydrogen peroxide and quercetin on cell viability, cell cycle phases and oxidative stress related cellular changes were investigated. Cell viability was assessed by WST-1 assay. Apoptosis rate, cell cycle phase changes and oxidative stress were measured by flow cytometry. Protein expressions of p21, p27, p53, NF-Kβ-p50 and proteasome activity were determined by Western blot and fluorometry, respectively. Results: Hydrogen peroxide and quercetin treatment resulted in decreased cell viability and increased apoptosis in HepG2 cells. Proteasome activity was increased by hydrogen peroxide but decreased by quercetin treatment. Conclusion: Both agents resulted in decreased p53 protein expression and increased cell death by different mechanisms regarding proteostasis and cell cycle phases.


2020 ◽  
Vol 36 (9) ◽  
pp. 2936-2937 ◽  
Author(s):  
Gareth Peat ◽  
William Jones ◽  
Michael Nuhn ◽  
José Carlos Marugán ◽  
William Newell ◽  
...  

Abstract Motivation Genome-wide association studies (GWAS) are a powerful method to detect even weak associations between variants and phenotypes; however, many of the identified associated variants are in non-coding regions, and presumably influence gene expression regulation. Identifying potential drug targets, i.e. causal protein-coding genes, therefore, requires crossing the genetics results with functional data. Results We present a novel data integration pipeline that analyses GWAS results in the light of experimental epigenetic and cis-regulatory datasets, such as ChIP-Seq, Promoter-Capture Hi-C or eQTL, and presents them in a single report, which can be used for inferring likely causal genes. This pipeline was then fed into an interactive data resource. Availability and implementation The analysis code is available at www.github.com/Ensembl/postgap and the interactive data browser at postgwas.opentargets.io.


Author(s):  
Yu-bo Zhou ◽  
Yang-ming Zhang ◽  
Hong-hui Huang ◽  
Li-jing Shen ◽  
Xiao-feng Han ◽  
...  

AbstractHDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%–35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donguk Kim ◽  
Na Yeon Park ◽  
Keunsoo Kang ◽  
Stuart K. Calderwood ◽  
Dong-Hyung Cho ◽  
...  

AbstractArsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer effects in humans. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (AS4O6; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood. In this study, we report the mechanisms of AS6 through transcriptome analyses. In particular, the cytotoxicity and global gene expression regulation by AS6 were compared in human normal and cancer breast epithelial cells. Using RNA-sequencing and bioinformatics analyses, differentially expressed genes in significantly affected biological pathways in these cell types were validated by real-time quantitative polymerase chain reaction and immunoblotting assays. Our data show markedly differential effects of AS6 on cytotoxicity and gene expression in human mammary epithelial normal cells (HUMEC) and Michigan Cancer Foundation 7 (MCF7), a human mammary epithelial cancer cell line. AS6 selectively arrests cell growth and induces cell death in MCF7 cells without affecting the growth of HUMEC in a dose-dependent manner. AS6 alters the transcription of a large number of genes in MCF7 cells, but much fewer genes in HUMEC. Importantly, we found that the cell proliferation, cell cycle, and DNA repair pathways are significantly suppressed whereas cellular stress response and apoptotic pathways increase in AS6-treated MCF7 cells. Together, we provide the first evidence of differential effects of AS6 on normal and cancerous breast epithelial cells, suggesting that AS6 at moderate concentrations induces cell cycle arrest and apoptosis through modulating genome-wide gene expression, leading to compromised DNA repair and increased genome instability selectively in human breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document