scholarly journals Genome-wide identification of Brassicaceae B-BOX genes and molecular characterization of their transcriptional responses to various nutrient stresses in allotetraploid rapeseed

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Li-wei Zheng ◽  
Sheng-jie Ma ◽  
Ting Zhou ◽  
Cai-peng Yue ◽  
Ying-peng Hua ◽  
...  

Abstract Background B-box (BBX) genes play important roles in plant growth regulation and responses to abiotic stresses. The plant growth and yield production of allotetraploid rapeseed is usually hindered by diverse nutrient stresses. However, no systematic analysis of Brassicaceae BBXs and the roles of BBXs in the regulation of nutrient stress responses have not been identified and characterized previously. Results In this study, a total of 536 BBXs were identified from nine brassicaceae species, including 32 AtBBXs, 66 BnaBBXs, 41 BoBBXs, 43 BrBBXs, 26 CrBBXs, 81 CsBBXs, 52 BnBBXs, 93 BjBBXs, and 102 BcBBXs. Syntenic analysis showed that great differences in the gene number of Brassicaceae BBXs might be caused by genome duplication. The BBXs were respectively divided into five subclasses according to their phylogenetic relationships and conserved domains, indicating their diversified functions. Promoter cis-element analysis showed that BBXs probably participated in diverse stress responses. Protein-protein interactions between BnaBBXs indicated their functions in flower induction. The expression profiles of BnaBBXs were investigated in rapeseed plants under boron deficiency, boron toxicity, nitrate limitation, phosphate shortage, potassium starvation, ammonium excess, cadmium toxicity, and salt stress conditions using RNA-seq data. The results showed that different BnaBBXs showed differential transcriptional responses to nutrient stresses, and some of them were simultaneously responsive to diverse nutrient stresses. Conclusions Taken together, the findings investigated in this study provided rich resources for studying Brassicaceae BBX gene family and enriched potential clues in the genetic improvement of crop stress resistance.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9551
Author(s):  
Lidong Hao ◽  
Shubing Shi ◽  
Haibin Guo ◽  
Ming Li ◽  
Pan Hu ◽  
...  

The Ethylene-Response Factor (ERF) subfamily transcription factors (TFs) belong to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily and play a vital role in plant growth and development. However, identification and analysis of the ERF subfamily genes in maize have not yet been performed at genome-wide level. In this study, a total of 76 ERF subfamily TFs were identified and were found to be unevenly distributed on the maize chromosomes. These maize ERF (ZmERF) TFs were classified into six groups, namely groups B1 to B6, based on phylogenetic analysis. Synteny analysis showed that 50, 54, and 58 of the ZmERF genes were orthologous to those in rice, Brachypodium, and Sorghum, respectively. Cis-element analysis showed that elements related to plant growth and development, hormones, and abiotic stress were identified in the promoter region of ZmERF genes. Expression profiles suggested that ZmERF genes might participate in plant development and in response to salinity and drought stresses. Our findings lay a foundation and provide clues for understanding the biological functions of ERF TFs in maize.


2020 ◽  
Author(s):  
Yihe Yu ◽  
Shengdi Yang ◽  
Lu Bian ◽  
Keke Yu ◽  
Xiangxuan Meng ◽  
...  

Abstract Background: RING is one of the largest E3 ubiquitin ligase families and C3H2C3 type is the largest subfamily of RING, playing an important role in plants’ development and growth and their biotic and abiotic stress responses. Results: A total of 143 RING C3H2C3-type genes (RCHCs) were discovered from the grapevine genome and separated into groups (I-XI) according to their phylogenetic analysis, with these genes named according to their positions on chromosomes. Gene replication analysis showed that tandem duplications play a predominant role in the expansion of VyRCHCs family together. Structural analysis showed that most VyRCHCs(67.13%) had no more than 2 introns, while genes clustered together based on phylogenetic trees had similar motifs and evolutionarily conserved structures. Cis-acting element analysis showed the diversity of VyRCHCs regulation. The expression profiles of eight DEGs in RNA-Seq after drought stress were similar to those in qRT-PCR analysis. The in vitro ubiquitin experiment showed that VyRCHC114 had E3 ubiquitin ligase activity, overexpression of VyRCHC114 in Arabidopsis improved drought tolerance, moreover, the transgenic plant survival rate increased by 30%, accompanied by changing of electrolyte leakage, chlorophyll content and the activities of SOD, POD, APX and CAT were changed. AtCOR15a, AtRD29A, AtERD15 and AtP5CS1 were expressed quantitatively, the results showed that they participated in the drought stress response may be regulated by the expression of VyRCHC114.Conclusions: Valuable new information on the evolution of grapevine RCHCs and its relevance for studying the functional characteristics of grapevine VyRCHC114 genes under drought stress emerged from this research.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1539 ◽  
Author(s):  
Houqing Zeng ◽  
Bingqian Zhao ◽  
Haicheng Wu ◽  
Yiyong Zhu ◽  
Huatao Chen

Calcium (Ca2+) plays a critical role in the regulation of growth and development and environmental stress responses in plants. The membrane-associated Ca2+ transport proteins are required to mediate Ca2+ signaling and maintain Ca2+ homeostasis. Ca2+ channels, pumps (ATPases), and antiporters are three major classes of Ca2+ transporters. Although the genome-wide analysis of Ca2+ transporters in model plants Arabidopsis and rice have been well documented, the identification, classification, phylogenesis, expression profiles, and physiological functions of Ca2+ transport proteins in soybean are largely unknown. In this study, a comprehensive in silico analysis of gene families associated with Ca2+ transport was conducted, and a total of 207 putative Ca2+ transporter genes have been identified in soybean. These genes belong to nine different families, such as Ca2+-ATPase, Ca2+/cation antiporter, cyclic nucleotide-gated ion channel (CNGC), and hyperosmolality induced cytosolic Ca2+ concentration channel (OSCA). Detailed analysis of these identified genes was performed, including their classification, phylogenesis, protein domains, chromosomal distribution, and gene duplication. Expression profiling of these genes was conducted in different tissues and developmental stages, as well as under stresses using publicly available RNA-seq data. Some genes were found to be predominantly expressed in specific tissues like flowers and nodules, and some genes were found to be expressed strongly during seed development. Seventy-four genes were found to be significantly and differentially expressed under abiotic and biotic stresses, such as salt, phosphorus deficiency, and fungal pathogen inoculation. In addition, hormonal signaling- and stress response-related cis-elements and potential microRNA target sites were analyzed. This study suggests the potential roles of soybean Ca2+ transporters in stress responses and growth regulation, and provides a basis for further functional characterization of putative Ca2+ transporters in soybean.


2020 ◽  
Vol 21 (18) ◽  
pp. 6594
Author(s):  
Shuting Zhang ◽  
Qin Zhou ◽  
Feng Chen ◽  
Lan Wu ◽  
Baojun Liu ◽  
...  

The plant-specific TCP transcription factors are well-characterized in both monocots and dicots, which have been implicated in multiple aspects of plant biological processes such as leaf morphogenesis and senescence, lateral branching, flower development and hormone crosstalk. However, no systematic analysis of the petunia TCP gene family has been described. In this work, a total of 66 petunia TCP genes (32 PaTCP genes in P. axillaris and 34 PiTCP genes in P. inflata) were identified. Subsequently, a systematic analysis of 32 PaTCP genes was performed. The phylogenetic analysis combined with structural analysis clearly distinguished the 32 PaTCP proteins into two classes—class Ι and class Ⅱ. Class Ⅱ was further divided into two subclades, namely, the CIN-TCP subclade and the CYC/TB1 subclade. Plenty of cis-acting elements responsible for plant growth and development, phytohormone and/or stress responses were identified in the promoter of PaTCPs. Distinct spatial expression patterns were determined among PaTCP genes, suggesting that these genes may have diverse regulatory roles in plant growth development. Furthermore, differential temporal expression patterns were observed between the large- and small-flowered petunia lines for most PaTCP genes, suggesting that these genes are likely to be related to petal development and/or petal size in petunia. The spatiotemporal expression profiles and promoter analysis of PaTCPs indicated that these genes play important roles in petunia diverse developmental processes that may work via multiple hormone pathways. Moreover, three PaTCP-YFP fusion proteins were detected in nuclei through subcellular localization analysis. This is the first comprehensive analysis of the petunia TCP gene family on a genome-wide scale, which provides the basis for further functional characterization of this gene family in petunia.


2019 ◽  
Vol 14 (1) ◽  
pp. 80-96 ◽  
Author(s):  
Xia He ◽  
Jing-jian Li ◽  
Yuan Chen ◽  
Jia-qi Yang ◽  
Xiao-yang Chen

AbstractThe WRKY gene family is an ancient plant transcription factor (TF) family with a vital role in plant growth and development, especially in response to biotic and abiotic stresses. Although many researchers have studied WRKY TFs in numerous plant species, little is known of them in Tartary buckwheat (Fagopyrum tataricum). Based on the recently reported genome sequence of Tartary buckwheat, we identified 78 FtWRKY proteins that could be classified into three major groups. All 77 WRKY genes were distributed unevenly across all eight chromosomes. Exon–intron analysis and motif composition prediction revealed the complexity and diversity of FtWRKYs, indicating that WRKY TFs may be of significance in plant growth regulation and stress response. Two separate pairs of tandem duplication genes were found, but no segmental duplications were identified. Overall, most orthologous gene-pairs between Tartary and common buckwheat evolved under strong purifying selection. qRT-PCR was used to analyze differences in expression among four FtWRKYs (FtWRKY6, 74, 31, and 7) under salt, drought, cold, and heat treatments. The results revealed that all four proteins are related to abiotic stress responses, although they exhibited various expression patterns. In particular, the relative expression levels of FtWRKY6, 74, and 31 were significantly upregulated under salt stress, while the highest expression of FtWRKY7 was observed from heat treatment. This study provides comprehensive insights into the WRKY gene family in Tartary buckwheat, and can support the screening of additional candidate genes for further functional characterization of WRKYs under various stresses.


2020 ◽  
Author(s):  
Wei-Wei Jiang ◽  
Dong-Hai Qu ◽  
Ji-Li Tian ◽  
Jin-Ping Si ◽  
Dong-Hong Chen

Abstract Background: Dendrobium catenatum is a kind of precious Traditional Chinese Medicine, and possesses unique developmental programs and epiphytic lifestyle. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are responsible for maintenance of histone acetylation homeostasis, and they are widely involved in developmental regulation and stress responses via remodeling chromatin structure, but their biological functions in orchid plants remain largely unknown.Results: Here we identified 8 HAT genes and 14 HDAC genes from D. catenatum genome. We carried out phylogenetic construction, gene structure and domain architecture analysis of these D. catenatum HAT/HDAC (DcHAT/DcHDAC) proteins using the well-defined homologs from the model plants Arabidopsis thaliana and Oryza sativa as references. DcHAT proteins can be classified into four families: GNAT family (3 members), MYST family (2), CBP family (2), and TAFII250 family (1), and DcHDAC proteins can be grouped into three families: RPD3/HDA1 family (10), SIR2 family (2), and HD2 family (2), in accordance with previously described classification. Cis-acting element analysis indicated that the promoter regions of DcHAT/DcHDAC genes contain diverse stress-responsive elements. Subcellular localization predictions suggested that DcHAT/DcHDAC proteins might be localized in nucleus or/and cytoplasm. Spatiotemporal expression profiling showed that DcHAT/DcHDAC genes generally exhibit either universal or specific expression pattern in different tissues and organs. Finally, stress response assay suggested drought treatment significantly represses the expression of DcHAG1 and DcHDA14, cold exposure evidently influences the expression of DcHAG1 and DcHDT1, and heat shock has a broad impact on the expression of DcHAT/DcHDAC genes.Conclusions: In this study, we reveal the identification and expression profiles of DcHATs and DcHDACs in epiphytic orchid plant D. catenatum, indicating their roles in the regulation of both long-term developmental programs and short-term stress responses. This study provides a foundation for in-depth functional excavation of HATs/HDACs associated with dynamic histone acetylation levels in orchids.


2020 ◽  
pp. 1-16
Author(s):  
J.C. Fountain ◽  
A.K. Pandey ◽  
S.N. Nayak ◽  
P. Bajaj ◽  
H. Wang ◽  
...  

Aflatoxin production by isolates of Aspergillus flavus varies, ranging from highly toxigenic to completely atoxigenic. Several mechanisms have been identified which regulate aflatoxin production including medium carbon source and oxidative stress. In recent studies, aflatoxin production has been implicated in partially ameliorating oxidative stress in A. flavus. To better understand the role of aflatoxin production in oxidative stress responses, a selection of toxigenic and atoxigenic isolates of A. flavus with moderate to high oxidative stress tolerance were exposed to increasing concentrations of H2O2 in both aflatoxin-conducive and non-conducive media. Mycelial mats were collected for global transcriptome sequencing followed by differential expression, functional prediction, and weighted co-expression analyses. Oxidative stress and medium carbon source had a significant effect on the expression of several secondary metabolite gene clusters including those for aflatoxin, aflatrem, aflavarin, cyclopiazonic acid, and kojic acid. Atoxigenic biological control isolates showed less differential expression under stress than other atoxigenic isolates suggesting expression profiles may be useful in screening. Increasing stress also resulted in regulation of SakA/Hog1 and MpkA MAP kinase signalling pathways pointing to their potential roles in regulating oxidative stress responses. Their expression was also influenced by medium carbon source. These results suggest that aflatoxin production along with that of other mycotoxins may occur as part of a concerted coping mechanism for oxidative stress and its effects in the environment. This mechanism is also regulated by availability of simple sugars and glycolytic compounds for their biosynthesis.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 531
Author(s):  
Omar Ali ◽  
Adesh Ramsubhag ◽  
Jayaraj Jayaraman

The use of seaweed-based bioproducts has been gaining momentum in crop production systems owing to their unique bioactive components and effects. They have phytostimulatory properties that result in increased plant growth and yield parameters in several important crop plants. They have phytoelicitor activity as their components evoke defense responses in plants that contribute to resistance to several pests, diseases, and abiotic stresses including drought, salinity, and cold. This is often linked to the upregulation of important defense-related genes and pathways in the plant system, priming the plant defenses against future attacks. They also evoke phytohormonal responses due to their specific components and interaction with plant growth regulation. Treatment by seaweed extracts and products also causes significant changes in the microbiome components of soil and plant in support of sustainable plant growth. Seaweed extracts contain a plethora of substances which are mostly organic, but trace levels of inorganic nutrient elements are also present. Fractionation of seaweed extracts into their components and their respective bioassays, however, has not yielded favorable growth effects. Only the whole seaweed extracts have been consistently proven to be very effective, which highlights the role of multiple components and their complex interactive effects on plant growth processes. Since seaweed extracts are highly organic, they are ideally suited for organic farming and environmentally sensitive crop production. They are also very compatible with other crop inputs, paving the way for an integrated management approach geared towards sustainability. The current review discusses the growth and functional effects evoked by seaweed extracts and their modes and mechanisms of action in crop plants which are responsible for elicitor and phytostimulatory activities. The review further analyses the potential value of seaweed extracts in integrated crop management systems towards sustainable crop production.


2018 ◽  
Vol 20 (1) ◽  
pp. 12 ◽  
Author(s):  
Yanjun He ◽  
Min Fan ◽  
Yuyan Sun ◽  
Lili Li

Watermelon (Citrullus lanatus L.), which is an economically important cucurbit crop that is cultivated worldwide, is vulnerable to various adverse environmental conditions. Small heat shock protein 20s (HSP20s) are the most abundant plant HSPs and they play important roles in various biotic and abiotic stress responses. However, they have not been systematically investigated in watermelon. In this study, we identified 44 watermelon HSP20 genes and analyzed their gene structures, conserved domains, phylogenetic relationships, chromosomal distributions, and expression profiles. All of the watermelon HSP20 proteins have a conserved the α-crystallin (ACD) domain. Half of the ClHSP20s arose through gene duplication events. Plant HSP20s were grouped into 18 subfamiles and a new subfamily, nucleo-cytoplasmic XIII (CXIII), was identified in this study. Numerous stress- and hormone-responsive cis-elements were detected in the putative promoter regions of the watermelon HSP20 genes. Different from that in other species, half of the watermelon HSP20s were repressed by heat stress. Plant HSP20s displayed diverse responses to different virus infections and most of the ClHSP20s were generally repressed by Cucumber green mottle mosaic virus (CGMMV). Some ClHSP20s exhibited similar transcriptional responses to abscisic acid, melatonin, and CGMMV. Subcellular localization analyses of six selected HSP20- green fluorescence protein fusion proteins revealed diverse subcellular targeting. Some ClHSP20 proteins were affected by CGMMV, as reflected by changes in the size, number, and distribution of fluorescent granules. These systematic analyses provide a foundation for elucidating the physiological functions and biological roles of the watermelon HSP20 gene family.


Sign in / Sign up

Export Citation Format

Share Document