scholarly journals miRNAs in decidual NK cells: regulators worthy of attention during pregnancy

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Liman Li ◽  
Ting Feng ◽  
Weijie Zhou ◽  
Yuan Liu ◽  
Hong Li

AbstractThe critical immune effectors, including T, B, and natural killer (NK) cells, dendritic cells, and macrophages participate in regulating immune responses during pregnancy. Among these immune cells, decidual NK (dNK) cells are involved in key placental development processes at the maternal–fetal interface, such as uterine spiral artery remodeling, trophoblast invasion, and decidualization. Mechanistically, dNK cells significantly influence pregnancy outcome by secreting cytokines, chemokines, and angiogenic mediators and by their interactions with trophoblasts and other decidual cells. MicroRNAs (miRNAs) are small non-coding RNA molecules that participate in the initiation and progression of human diseases. Although the functions of circulating miRNAs in pathological mechanism has been extensively studied, the regulatory roles of miRNAs in NK cells, especially in dNK cells, have been rarely reported. In this review, we analyze the effects of miRNA regulations of dNK cell functions on the immune system during gestation. We discuss aberrant expressions of certain miRNAs in dNK cells that may lead to pathological consequences, such as recurrent pregnancy loss (RPL). Interestingly, miRNA expression patterns are also different between dNK cells and peripheral NK (pNK) cells, and pNK cells in the first- and third‐trimester of gestation. The dysregulation of miRNA plays a pivotal regulatory role in driving immune functions of dNK and pNK cells. Further understanding of the molecular mechanisms of miRNAs in dNK cells may provide new insights into the development of therapeutics to prevent pregnancy failure.

Reproduction ◽  
2014 ◽  
Vol 148 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Fulu Dong ◽  
Yuan Zhang ◽  
Fei Xia ◽  
Yi Yang ◽  
Sidong Xiong ◽  
...  

MicroRNAs (miRNAs) are non-coding RNA molecules of about 22 nucleotides that involved in post-transcriptional gene regulation. Evidence indicates that miRNAs play essential roles in endometriosis, pre-eclampsia, infertility and other reproductive system diseases. However, whether miRNAs are involved in recurrent spontaneous abortion (RSA) is unclear. In this work, we analysed the miRNA expression profiles in six pairs of villus or decidua from RSA patients and normal pregnancy (NP) women using a human miRNA microarray. Some of the chip results were confirmed by RT-qPCR. In the villi of RSA patients, expression of hsa-miR-184, hsa-miR-187 and hsa-miR-125b-2 was significantly higher, while expression of hsa-miR-520f, hsa-miR-3175 and hsa-miR-4672 was significantly lower, comparing with those of NP control. As well, a total of five miRNAs (hsa-miR-517c, hsa-miR-519a-1, hsa-miR-522, hsa-miR-520h and hsa-miR-184) were upregulated in the decidua of RSA patients. The target genes of these differentially expressed miRNAs were predicted by miRWalk, and we speculate a network of miRNA regulating RSA by target genes function on adhesion, apoptosis and angiogenesis. Our study may help clarify the molecular mechanisms which are involved in the progression of RSA, and provide a reference for future research.


2020 ◽  
Vol 21 (8) ◽  
pp. 2742 ◽  
Author(s):  
Allan Böhm ◽  
Marianna Vachalcova ◽  
Peter Snopek ◽  
Ljuba Bacharova ◽  
Dominika Komarova ◽  
...  

Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules responsible for regulation of gene expression. They are involved in many pathophysiological processes of a wide spectrum of diseases. Recent studies showed their involvement in atrial fibrillation. They seem to become potential screening biomarkers for atrial fibrillation and even treatment targets for this arrhythmia. The aim of this review article was to summarize the latest knowledge about miRNA and their molecular relation to the pathophysiology, diagnosis and treatment of atrial fibrillation.


2019 ◽  
Vol 20 (22) ◽  
pp. 5547 ◽  
Author(s):  
Alexey Churov ◽  
Volha Summerhill ◽  
Andrey Grechko ◽  
Varvara Orekhova ◽  
Alexander Orekhov

Atherosclerosis is a complex multifactorial disease that, despite advances in lifestyle management and drug therapy, remains to be the major cause of high morbidity and mortality rates from cardiovascular diseases (CVDs) in industrialized countries. Therefore, there is a great need in reliable diagnostic/prognostic biomarkers and effective treatment alternatives to reduce its burden. It was established that microRNAs (miRNAs/miRs), a class of non-coding single-stranded RNA molecules, can regulate the expression of genes at the post-transcriptional level and, accordingly, coordinate the cellular protein expression. Thus, they are involved not only in cell-specific physiological functions but also in the cellular and molecular mechanisms of human pathologies, including atherosclerosis. MiRNAs may be significant in the dysregulation that affects endothelial integrity, the function of vascular smooth muscle and inflammatory cells, and cellular cholesterol homeostasis that drives the initiation and growth of an atherosclerotic plaque. Besides, distinct expression patterns of several miRNAs are attributed to atherosclerotic and cardiovascular patients. In this article, the evidence indicating the multiple critical roles of miRNAs and their relevant molecular mechanisms related to atherosclerosis development and progression was reviewed. Moreover, the effects of miRNAs on atherosclerosis enabled to exploit them as novel diagnostic biomarkers and therapeutic targets that may lead to better management of atherosclerosis and CVDs.


2020 ◽  
Vol 21 (10) ◽  
pp. 3711
Author(s):  
Melina J. Sedano ◽  
Alana L. Harrison ◽  
Mina Zilaie ◽  
Chandrima Das ◽  
Ramesh Choudhari ◽  
...  

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sung-Hyun Kim ◽  
Key-Hwan Lim ◽  
Sumin Yang ◽  
Jae-Yeol Joo

AbstractBrain tumors are associated with adverse outcomes despite improvements in radiation therapy, chemotherapy, and photodynamic therapy. However, treatment approaches are evolving, and new biological phenomena are being explored to identify the appropriate treatment of brain tumors. Long non-coding RNAs (lncRNAs), a type of non-coding RNA longer than 200 nucleotides, regulate gene expression at the transcriptional, post-transcriptional, and epigenetic levels and are involved in a variety of biological functions. Recent studies on lncRNAs have revealed their aberrant expression in various cancers, with distinct expression patterns associated with their instrumental roles in cancer. Abnormal expression of lncRNAs has also been identified in brain tumors. Here, we review the potential roles of lncRNAs and their biological functions in the context of brain tumors. We also summarize the current understanding of the molecular mechanisms and signaling pathways related to lncRNAs that may guide clinical trials for brain tumor therapy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255142
Author(s):  
Joanna Lopacinska-Jørgensen ◽  
Douglas V. N. P. Oliveira ◽  
Guy Wayne Novotny ◽  
Claus K. Høgdall ◽  
Estrid V. Høgdall

Ovarian cancer (OC), the eighth-leading cause of cancer-related death among females worldwide, is mainly represented by epithelial OC (EOC) that can be further subdivided into four subtypes: serous (75%), endometrioid (10%), clear cell (10%), and mucinous (3%). Major reasons for high mortality are the poor biological understanding of the OC mechanisms and a lack of reliable markers defining each EOC subtype. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression primarily by targeting messenger RNA (mRNA) transcripts. Their aberrant expression patterns have been associated with cancer development, including OC. However, the role of miRNAs in tumorigenesis is still to be determined, mainly due to the lack of consensus regarding optimal methodologies for identification and validation of miRNAs and their targets. Several tools for computational target prediction exist, but false interpretations remain a problem. The experimental validation of every potential miRNA-mRNA pair is not feasible, as it is laborious and expensive. In this study, we analyzed the correlation between global miRNA and mRNA expression patterns derived from microarray profiling of 197 EOC patients to identify the signatures of miRNA-mRNA interactions associated with overall survival (OS). The aim was to investigate whether these miRNA-mRNA signatures might have a prognostic value for OS in different subtypes of EOC. The content of our cohort (162 serous carcinomas, 15 endometrioid carcinomas, 11 mucinous carcinomas, and 9 clear cell carcinomas) reflects a real-world scenario of EOC. Several interaction pairs between 6 miRNAs (hsa-miR-126-3p, hsa-miR-223-3p, hsa-miR-23a-5p, hsa-miR-27a-5p, hsa-miR-486-5p, and hsa-miR-506-3p) and 8 mRNAs (ATF3, CH25H, EMP1, HBB, HBEGF, NAMPT, POSTN, and PROCR) were identified and the findings appear to be well supported by the literature. This indicates that our study has a potential to reveal miRNA-mRNA signatures relevant for EOC. Thus, the evaluation on independent cohorts will further evaluate the performance of such findings.


2020 ◽  
Vol 11 ◽  
Author(s):  
Vera Schwane ◽  
Van Hung Huynh-Tran ◽  
Sarah Vollmers ◽  
Vivien Maria Yakup ◽  
Jürgen Sauter ◽  
...  

NK cells are phenotypically and functionally diverse lymphocytes due to variegated expression of a large array of receptors. NK-cell activity is tightly regulated through integration of receptor-derived inhibitory and activating signals. Thus, the receptor profile of each NK cell ultimately determines its ability to sense aberrant cells and subsequently mediate anti-viral or anti-tumor responses. However, an in-depth understanding of how different receptor repertoires enable distinct immune functions of NK cells is lacking. Therefore, we investigated the phenotypic diversity of primary human NK cells by performing extensive phenotypic characterization of 338 surface molecules using flow cytometry (n = 18). Our results showed that NK cells express at least 146 receptors on their surface. Of those, 136 (>90%) exhibited considerable inter-donor variability. Moreover, comparative analysis of CD56bright and CD56dim NK cells identified 70 molecules with differential expression between the two major NK-cell subsets and allowed discrimination of these subsets via unsupervised hierarchical clustering. These receptors were associated with a broad range of NK-cell functions and multiple molecules were not previously associated with predominant expression on either subset (e.g. CD82 and CD147). Altogether, our study contributes to an improved understanding of the phenotypic diversity of NK cells and its potential functional implications on a cellular and population level. While the identified distinct signatures in the receptor repertoires provide a molecular basis for the differential immune functions exerted by CD56bright and CD56dim NK cells, the observed inter-individual differences in the receptor repertoire of NK cells may contribute to a diverging ability to control certain diseases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adam P. Sage ◽  
Kevin W. Ng ◽  
Erin A. Marshall ◽  
Greg L. Stewart ◽  
Brenda C. Minatel ◽  
...  

Abstract The tumour immune microenvironment is a crucial mediator of lung tumourigenesis, and characterizing the immune landscape of patient tumours may guide immunotherapy treatment regimens and uncover novel intervention points. We sought to identify the landscape of tumour-infiltrating immune cells in the context of long non-coding RNA (lncRNAs), known regulators of gene expression. We examined the lncRNA profiles of lung adenocarcinoma (LUAD) tumours by interrogating RNA sequencing data from microdissected and non-microdissected samples (BCCRC and TCGA). Subsequently, analysis of single-cell RNA sequencing data from lung tumours and flow-sorted healthy peripheral blood mononuclear cells identified lncRNAs in immune cells, highlighting their biological and prognostic relevance. We discovered lncRNA expression patterns indicative of regulatory relationships with immune-related protein-coding genes, including the relationship between AC008750.1 and NKG7 in NK cells. Activation of NK cells in vitro was sufficient to induce AC008750.1 expression. Finally, siRNA-mediated knockdown of AC008750.1 significantly impaired both the expression of NKG7 and the anti-tumour capacity of NK cells. We present an atlas of cancer-cell extrinsic immune cell-expressed lncRNAs, in vitro evidence for a functional role of lncRNAs in anti-tumour immune activity, which upon further exploration may reveal novel clinical utility as markers of immune infiltration.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 859 ◽  
Author(s):  
Jean-François Landrier ◽  
Adel Derghal ◽  
Lourdes Mounien

Metabolic disorders are characterized by the inability to properly use and/or store energy. The burdens of metabolic disease, such as obesity or diabetes, are believed to arise through a complex interplay between genetics and epigenetics predisposition, environment and nutrition. Therefore, understanding the molecular mechanisms for the onset of metabolic disease will provide new insights for prevention and treatment. There is growing concern about the dysregulation of micro-RNAs (miRNAs) in metabolic diseases. MiRNAs are short non-coding RNA molecules that post-transcriptionally repress the expression of genes by binding to untranslated regions and coding sequences of the target mRNAs. This review aims to provide recent data about the potential involvement of miRNAs in metabolic diseases, particularly obesity and type 2 diabetes.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1216 ◽  
Author(s):  
Philippe Le Bouteiller ◽  
Armand Bensussan

One part of the human placenta in early pregnancy is particularly important for local immunity: the decidua basalis, which is transformed endometrium located at the site of embryo implantation. This placental bed tissue contains both maternal uterine immune cells, including decidual natural killer (NK) cells, the dominant leukocyte population exhibiting a unique phenotype, and fetal extravillous trophoblast which comes into direct contact with maternal decidual cells. To establish a successful placental development and healthy pregnancy outcome, the maternal immune system must tolerate paternal antigens expressed by trophoblast cells yet remain efficient for clearing any local pathogen infection. This review deals mainly with decidual NK cells. A key element, among others, to achieve such dual functions is the direct interaction between activating and inhibitory receptors expressed by decidual NK cells and their specific ligands presented by trophoblast or other decidual cells. Depending whether maternal decidual cells and trophoblast are infected by viruses, the balance between activating and inhibitory receptor signals mediated by decidual NK cell–trophoblast cross-talk results in tolerance (healthy pregnancy) or specific killing (pathogen-infected cells).


Sign in / Sign up

Export Citation Format

Share Document