scholarly journals Genome-wide methylation patterns in Marfan syndrome

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mitzi M. van Andel ◽  
Maarten Groenink ◽  
Maarten P. van den Berg ◽  
Janneke Timmermans ◽  
Arthur J. H. A. Scholte ◽  
...  

Abstract Background Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the Fibrillin-1 gene (FBN1). Here, we undertook the first epigenome-wide association study (EWAS) in patients with MFS aiming at identifying DNA methylation loci associated with MFS phenotypes that may shed light on the disease process. Methods The Illumina 450 k DNA-methylation array was used on stored peripheral whole-blood samples of 190 patients with MFS originally included in the COMPARE trial. An unbiased genome-wide approach was used, and methylation of CpG-sites across the entire genome was evaluated. Additionally, we investigated CpG-sites across the FBN1-locus (15q21.1) more closely, since this is the gene defective in MFS. Differentially Methylated Positions (DMPs) and Differentially Methylated Regions (DMRs) were identified through regression analysis. Associations between methylation levels and aortic diameters and presence or absence of 21 clinical features of MFS at baseline were analyzed. Moreover, associations between aortic diameter change, and the occurrence of clinical events (death any cause, type-A or -B dissection/rupture, or aortic surgery) and methylation levels were analyzed. Results We identified 28 DMPs that are significantly associated with aortic diameters in patients with MFS. Seven of these DMPs (25%) could be allocated to a gene that was previously associated with cardiovascular diseases (HDAC4, IGF2BP3, CASZ1, SDK1, PCDHGA1, DIO3, PTPRN2). Moreover, we identified seven DMPs that were significantly associated with aortic diameter change and five DMP’s that associated with clinical events. No significant associations at p < 10–8 or p < 10–6 were found with any of the non-cardiovascular phenotypic MFS features. Investigating DMRs, clusters were seen mostly on X- and Y, and chromosome 18–22. The remaining DMRs indicated involvement of a large family of protocadherins on chromosome 5, which were not reported in MFS before. Conclusion This EWAS in patients with MFS has identified a number of methylation loci significantly associated with aortic diameters, aortic dilatation rate and aortic events. Our findings add to the slowly growing literature on the regulation of gene expression in MFS patients.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Laurent Briollais ◽  
Denis Rustand ◽  
Catherine Allard ◽  
Yanyan Wu ◽  
Jingxiong Xu ◽  
...  

Abstract Background The role of breastfeeding in modulating epigenetic factors has been suggested as a possible mechanism conferring its benefits on child development but it lacks evidence. Using extensive DNA methylation data from the ALSPAC child cohort, we characterized the genome-wide landscape of DNA methylation variations associated with the duration of exclusive breastfeeding and assessed whether these variations mediate the association between exclusive breastfeeding and BMI over different epochs of child growth. Results Exclusive breastfeeding elicits more substantial DNA methylation variations during infancy than at other periods of child growth. At the genome-wide level, 13 CpG sites in girls (miR-21, SNAPC3, ATP6V0A1, DHX15/PPARGC1A, LINC00398/ALOX5AP, FAM238C, NATP/NAT2, CUX1, TRAPPC9, OSBPL1A, ZNF185, FAM84A, PDPK1) and 2 CpG sites in boys (IL16 and NREP), mediate the association between exclusive breastfeeding and longitudinal BMI. We found enrichment of CpG sites located within miRNAs and key pathways (AMPK signaling pathway, insulin signaling pathway, endocytosis). Overall DNA methylation variation corresponding to 3 to 5 months of exclusive breastfeeding was associated with slower BMI growth the first 6 years of life compared to no breastfeeding and in a dose–response manner with exclusive breastfeeding duration. Conclusions Our study confirmed the early postnatal period as a critical developmental period associated with substantial DNA methylation variations, which in turn could mitigate the development of overweight and obesity from infancy to early childhood. Since an accelerated growth during these developmental periods has been linked to the development of sustained obesity later in life, exclusive breastfeeding could have a major role in preventing the risks of overweight/obesity and children and adults through DNA methylation mechanisms occurring early in life.


Circulation ◽  
2017 ◽  
Vol 135 (suppl_1) ◽  
Author(s):  
Xiaoling Wang ◽  
Yue Pan ◽  
Haidong Zhu ◽  
Guang Hao ◽  
Xin Wang ◽  
...  

Background: Several large-scale epigenome wide association studies on obesity-related DNA methylation changes have been published and in total identified 46 CpG sites. These studies were conducted in middle-aged and older adults of Caucasians and African Americans (AAs) using leukocytes. To what extend these signals are independent of cell compositions as well as to what extend they may influence gene expression have not been systematically investigated. Furthermore, the high prevalence of obesity comorbidities in middle-aged or older population may hide or bias obesity itself related DNA methylation changes. Methods: In this study of healthy AA youth and young adults, genome wide DNA methylation data from leukocytes were obtained from three independent studies: EpiGO study (96 obese cases vs. 92 lean controls, aged 14-21, 50% females, test of interest is obesity status), LACHY study (284 participants from general population, aged 14-18, 50% females, test of interest is BMI), and Georgia Stress and Heart study (298 participants from general population, aged 18-38, 52% females, test of interest is BMI) using the Infinium HumanMethylation450 BeadChip. Genome wide DNA methylation data from purified neutrophils as well as genome wide gene expression data from leukocytes using Illumina HT12 V4 array were also obtained for the EpiGO samples. Results: The meta-analysis on the 3 cohorts identified 76 obesity related CpG sites in leukocytes with p<1х10 -7 . Out of the 46 previously identified CpG sites, 36 can be replicated in this AA youth and young adult sample with same direction and p<0.05. Out of the 107 CpG sites including the 36 replicated ones and the 71 newly identified ones, 71 CpG sites (66%) had their relationship with obesity replicated in purified neutrophils (p<0.05). The analysis on the cis regulation of the 107 CpG sites on gene expression showed that 59 CpG sites had at least one gene within 250kb having expression difference between obese cases and lean controls. Furthermore, out of the 59 CpG sites, 6 showed significantly negative correlations and 1 showed significantly positive correlation with the differentially expressed genes. These CpG sites located in SOCS3, CISH, ABCG1, PIM3 and PTGDS genes. Conclusion: In this study of AA youth and young adults, we identified novel CpG sites associated with obesity and replicated majority of the CpG sites previously identified in middle-aged and older adults. For the first time, we showed that majority of the obesity related CpG sites identified from leukocytes are not driven by cell compositions and provided the direct link between DNA methylation-gene expression-obesity status for 7 CpG sites in 5 genes.


2020 ◽  
Vol 21 (12) ◽  
pp. 4476
Author(s):  
Marcela A S Pinhel ◽  
Natália Y Noronha ◽  
Carolina F Nicoletti ◽  
Vanessa AB Pereira ◽  
Bruno AP de Oliveira ◽  
...  

Weight regulation and the magnitude of weight loss after a Roux-en-Y gastric bypass (RYGB) can be genetically determined. DNA methylation patterns and the expression of some genes can be altered after weight loss interventions, including RYGB. The present study aimed to evaluate how the gene expression and DNA methylation of PIK3R1, an obesity and insulin-related gene, change after RYGB. Blood samples were obtained from 13 women (35.9 ± 9.2 years) with severe obesity before and six months after surgical procedure. Whole blood transcriptome and epigenomic patterns were assessed by microarray-based, genome-wide technologies. A total of 1966 differentially expressed genes were identified in the pre- and postoperative periods of RYGB. From these, we observed that genes involved in obesity and insulin pathways were upregulated after surgery. Then, the PIK3R1 gene was selected for further RT-qPCR analysis and cytosine-guanine nucleotide (CpG) sites methylation evaluation. We observed that the PI3KR1 gene was upregulated, and six DNA methylation CpG sites were differently methylated after bariatric surgery. In conclusion, we found that RYGB upregulates genes involved in obesity and insulin pathways.


2019 ◽  
Vol 40 (5) ◽  
pp. 611-623 ◽  
Author(s):  
Takeshi Makabe ◽  
Eri Arai ◽  
Takuro Hirano ◽  
Nanako Ito ◽  
Yukihiro Fukamachi ◽  
...  

Abstract The present study was performed to clarify the significance of DNA methylation alterations during endometrial carcinogenesis. Genome-wide DNA methylation analysis and targeted sequencing of tumor-related genes were performed using the Infinium MethylationEPIC BeadChip and the Ion AmpliSeq Cancer Hotspot Panel v2, respectively, for 31 samples of normal control endometrial tissue from patients without endometrial cancer and 81 samples of endometrial cancer tissue. Principal component analysis revealed that tumor samples had a DNA methylation profile distinct from that of control samples. Gene Ontology enrichment analysis revealed significant differences of DNA methylation at 1034 CpG sites between early-onset endometrioid endometrial cancer (EE) tissue (patients aged ≤40 years) and late-onset endometrioid endometrial cancer (LE) tissue, which were accumulated among ‘transcriptional factors’. Mutations of the CTNNB1 gene or DNA methylation alterations of genes participating in Wnt signaling were frequent in EEs, whereas genetic and epigenetic alterations of fibroblast growth factor signaling genes were observed in LEs. Unsupervised hierarchical clustering grouped EE samples in Cluster EA (n = 22) and samples in Cluster EB (n = 12). Clinicopathologically less aggressive tumors tended to be accumulated in Cluster EB, and DNA methylation levels of 18 genes including HOXA9, HOXD10 and SOX11 were associated with differences in such aggressiveness between the two clusters. We identified 11 marker CpG sites that discriminated EB samples from EA samples with 100% sensitivity and specificity. These data indicate that genetically and epigenetically different pathways may participate in the development of EEs and LEs, and that DNA methylation profiling may help predict tumors that are less aggressive and amenable to fertility preservation treatment.


Author(s):  
Xiangyu Luo ◽  
Joel Schwartz ◽  
Andrea Baccarelli ◽  
Zhonghua Liu

Abstract Epigenome-wide mediation analysis aims to identify DNA methylation CpG sites that mediate the causal effects of genetic/environmental exposures on health outcomes. However, DNA methylations in the peripheral blood tissues are usually measured at the bulk level based on a heterogeneous population of white blood cells. Using the bulk level DNA methylation data in mediation analysis might cause confounding bias and reduce study power. Therefore, it is crucial to get fine-grained results by detecting mediation CpG sites in a cell-type-specific way. However, there is a lack of methods and software to achieve this goal. We propose a novel method (Mediation In a Cell-type-Specific fashion, MICS) to identify cell-type-specific mediation effects in genome-wide epigenetic studies using only the bulk-level DNA methylation data. MICS follows the standard mediation analysis paradigm and consists of three key steps. In step1, we assess the exposure-mediator association for each cell type; in step 2, we assess the mediator-outcome association for each cell type; in step 3, we combine the cell-type-specific exposure-mediator and mediator-outcome associations using a multiple testing procedure named MultiMed [Sampson JN, Boca SM, Moore SC, et al. FWER and FDR control when testing multiple mediators. Bioinformatics 2018;34:2418–24] to identify significant CpGs with cell-type-specific mediation effects. We conduct simulation studies to demonstrate that our method has correct FDR control. We also apply the MICS procedure to the Normative Aging Study and identify nine DNA methylation CpG sites in the lymphocytes that might mediate the effect of cigarette smoking on the lung function.


2020 ◽  
Vol 9 (2) ◽  
pp. 290
Author(s):  
Anthonie Duijnhouwer ◽  
Allard van den Hoven ◽  
Remy Merkx ◽  
Michiel Schokking ◽  
Roland van Kimmenade ◽  
...  

Objective: The combination of aortic coarctation (CoA) and bicuspid aortic valve (BAV) is assumed to be associated with a higher risk of ascending aortic dilatation and type A dissection, and current European Society of Cardiology (ESC) guidelines advise therefore to operate at a lower threshold in the presence of CoA. The aim of our study is to evaluate whether the coexistence of CoA in BAV patients is indeed associated with a higher risk of ascending aortic events (AAE). Methods: In a retrospective study, all adult BAV patients visiting the outpatient clinic of our tertiary care center between February 2003 and February 2019 were included. The primary end point was an ascending aortic event (AAE) defined as ascending aortic dissection/rupture or preventive surgery. The secondary end points were aortic dilatation and aortic growth. Results: In total, 499 BAV patients (43.7% female, age 40.3 ± 15.7 years) were included, of which 121 (24%) had a history of CoA (cBAV). An aortic event occurred in 38 (7.6%) patients at a mean age of 49.0 ± 13.6 years. In the isolated BAV group (iBAV), significantly more AAE occurred, but this was mainly driven by aortic valve dysfunction as indication for aortic surgery. There was no significant difference in the occurrence of dissection or severely dilated ascending aorta (>50 mm) between the iBAV and cBAV patients (p = 0.56). The aortic diameter was significantly smaller in the cBAV group (30.3 ± 6.9 mm versus 35.7 ± 7.6 mm; p < 0.001). The median aortic diameter increase was 0.23 (interquartile range (IQR): 0.0–0.67) mm/year and was not significantly different between both groups (p = 0.74). Conclusion: Coexistence of CoA in BAV patients was not associated with a higher risk of aortic dissection, preventive aortic surgery, aortic dilatation, or more rapid aorta growth. This study suggests that CoA is not a risk factor in BAV patients, and the advice to operate at lower diameter should be reevaluated.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 653-653 ◽  
Author(s):  
Ying Qu ◽  
Andreas Lennartsson ◽  
Verena I. Gaidzik ◽  
Stefan Deneberg ◽  
Sofia Bengtzén ◽  
...  

Abstract Abstract 653 DNA methylation is involved in multiple biologic processes including normal cell differentiation and tumorigenesis. In AML, methylation patterns have been shown to differ significantly from normal hematopoietic cells. Most studies of DNA methylation in AML have previously focused on CpG islands within the promoter of genes, representing only a very small proportion of the DNA methylome. In this study, we performed genome-wide methylation analysis of 62 AML patients with CN-AML and CD34 positive cells from healthy controls by Illumina HumanMethylation450K Array covering 450.000 CpG sites in CpG islands as well as genomic regions far from CpG islands. Differentially methylated CpG sites (DMS) between CN-AML and normal hematopoietic cells were calculated and the most significant enrichment of DMS was found in regions more than 4kb from CpG Islands, in the so called open sea where hypomethylation was the dominant form of aberrant methylation. In contrast, CpG islands were not enriched for DMS and DMS in CpG islands were dominated by hypermethylation. DMS successively further away from CpG islands in CpG island shores (up to 2kb from CpG Island) and shelves (from 2kb to 4kb from Island) showed increasing degree of hypomethylation in AML cells. Among regions defined by their relation to gene structures, CpG dinucleotide located in theoretic enhancers were found to be the most enriched for DMS (Chi χ2<0.0001) with the majority of DMS showing decreased methylation compared to CD34 normal controls. To address the relation to gene expression, GEP (gene expression profiling) by microarray was carried out on 32 of the CN-AML patients. Totally, 339723 CpG sites covering 18879 genes were addressed on both platforms. CpG methylation in CpG islands showed the most pronounced anti-correlation (spearman ρ =-0.4145) with gene expression level, followed by CpG island shores (mean spearman rho for both sides' shore ρ=-0.2350). As transcription factors (TFs) have shown to be crucial for AML development, we especially studied differential methylation of an unbiased selection of 1638 TFs. The most enriched differential methylation between CN-AML and normal CD34 positive cells were found in TFs known to be involved in hematopoiesis and with Wilms tumor protein-1 (WT1), activator protein 1 (AP-1) and runt-related transcription factor 1 (RUNX1) being the most differentially methylated TFs. The differential methylation in WT 1 and RUNX1 was located in intragenic regions which were confirmed by pyro-sequencing. AML cases were characterized with respect to mutations in FLT3, NPM1, IDH1, IDH2 and DNMT3A. Correlation analysis between genome wide methylation patterns and mutational status showed statistically significant hypomethylation of CpG Island (p<0.0001) and to a lesser extent CpG island shores (p<0.001) and the presence of DNMT3A mutations. This links DNMT3A mutations for the first time to a hypomethylated phenotype. Further analyses correlating methylation patterns to other clinical data such as clinical outcome are ongoing. In conclusion, our study revealed that non-CpG island regions and in particular enhancers are the most aberrantly methylated genomic regions in AML and that WT 1 and RUNX1 are the most differentially methylated TFs. Furthermore, our data suggests a hypomethylated phenotype in DNMT3A mutated AML. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Young-Ah You ◽  
Eun Jin Kwon ◽  
Han-Sung Hwang ◽  
Suk-Joo Choi ◽  
Sae Kyung Choi ◽  
...  

Abstract Background Preterm birth is associated with an increased risk of neonatal complications and death, as well as poor health and disease later in life. Epigenetics could contribute to the mechanism underlying preterm birth. Results Genome-wide DNA methylation in whole blood cells from ten women was assessed using Illumina Infinium HumanMethylation450 BeadChips array. We identified 6,755 differentially methylated CpG sites between term and preterm birth. Although no differential methylation of these CpGs were found in correcting for multiple tests, seven VTRNA2-1 CpGs in promotor region of island were detected in top different methylation. We performed pyrosequencing validation with blood samples from the pregnant women. The methylation levels of VTRNA2-1 were either low (hypomethylated, 0–12.2%) or high (hypermethylated, 32.6–50.8%). Hypermethylation of VTRNA2-1 was associated with an increased risk of preterm birth after adjusting for maternal age, delivered season, parity and count of white blood cell. The mRNA expression of VTRNA2-1 was 0.51-fold lower in PTB delivered women compared with women with term deliveries. Conclusion This study suggests that change of VTRNA2-1 methylation is related to PTB in maternal blood. Further elucidate to underlay mechanisms of preterm birth and affect to future systems biology studies to predict preterm birth.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Amit Tirosh ◽  
Jonathan Keith Killian ◽  
Petersen David ◽  
Yuelin Jack Zhu ◽  
Jenny Blau ◽  
...  

Abstract Objective There is scant data of the genome-wide methylome alterations in neuroendocrine tumors (NET). Thus, the goal of this study was to compare the DNA methylation signature of NETs with respect to various primary sites and inherited genetic predisposition syndromes including von Hippel-Lindau (VHL) and multiple endocrine neoplasia type 1 (MEN1). Methods Genome-wide DNA methylation analysis of 96 NETs (primary and metastatic) was performed by using the Illumina Infinium EPIC Array. Principal component analysis (PCA) and unsupervised clustering analyses were performed to identify distinct methylome signatures. The methylation status of genetic drivers such as APC were assessed by primary site. Results A total of 835,424 CpGs methylation sites were quantified. Hypermethylated CpG sites were detected more frequently in sporadic vs. MEN1-related vs. VHL-related NETs, respectively (p &lt; 0.001 for all comparisons), while hypomethylated CpGs sites were more common in VHL-related NETs vs. sporadic and MEN1-related NETs (p&lt;0.001 for both comparisons). Small-intestinal NETs (SINETs) had the most differences at CpGs with the highest number of hyper- and hypomethylated CpG sites, followed by duodenal NETs (DNETs) and pancreatic NETs (PNETs, p&lt;0.001 for all comparisons). PCA showed distinct clustering of SINETs and three NETs of unknown primary. Sporadic, VHL-related and MEN1-related PNETs formed distinct groups on PCA. VHL-related NETs clustered separately showing pronounced CpG hypomethylation, while sporadic and MEN1-related NETs clustered together showing relative CpG hypermethylation. In a subgroup analysis, MEN1-related SINETs, DNETs and gastric NETs had distinct methylome signatures, respectively, with complete separation by PCA and unsupervised hierarchical clustering. Furthermore, we found CpG hypermethylation in the APC (adenomatous polyposis coli) gene, specifically in the 1A promoter, with higher methylation levels in gastric- and DNETs vs. SINETs, PNETs and NETs of unknown primary (p &lt; 0.001 for all comparisons). Conclusion Various primary NET sites and genetically predisposed MEN1-related NETs have distinct DNA CpG methylation signatures. The methylome signatures identified in this study may be useful for non-invasive molecular characterization of NETs, through DNA methylation profiling of biopsy samples or circulating tumor DNA.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2739-2739
Author(s):  
Genki Yamato ◽  
Tomoko Kawai ◽  
Norio Shiba ◽  
Yusuke Hara ◽  
Kentaro Ohki ◽  
...  

Introduction Acute myeloid leukemia (AML) is a clinically and biologically heterogeneous hematologic malignancy characterized by various genetic alterations. Currently, DNA methylation patterns were reported to be associated with molecular subtypes, chromosomal abnormalities, gene fusion, and prognosis in AML. Furthermore, previous study reported that aberrant cancer-associated DNA hypermethylation targets CpG islands characterized by bivalent chromatin in human embryonic stem cells (hESCs), and the bivalent chromatin signature in hESCs was a key determinant of the instructive program for aberrant DNA methylation. Thus, we analyzed genome-wide DNA methylation in 64 pediatric patients with AML to reveal its association with clinical features, genetic alterations, and prognostic impact. Methods Between 2006 and 2010, 443 pediatric patients with de novo AML (0-17 years) participated in the Japanese AML-05 trial conducted by the Japanese Pediatric Leukemia/Lymphoma Study Group. Of these, 64 patients were enrolled in this study. The cytogenetic features of 64 patients were as follows: normal karyotype, 28; RUNX1-RUNX1T1, 8; KMT2A rearrangement, 15; complex karyotype, 6; and other cytogenetics, 7. This cohort included 15 patients with FLT3-internal tandem duplication (ITD), 8 with CEBPA biallelic mutations, 5 with high MECOM (EVI1) expression, and 17 with high PRDM16 (MEL1) expression. We performed genome-wide DNA methylation analysis using Infinium MethylationEPIC BeadChip (Illumina) in 64 pediatric patients. Results and Discussion 824,848 methylation sites per sample were analyzed in 64 pediatric patients with AML. To capture DNA methylation differences across samples, we selected 567 CpG sites which showed most variable methylation values between 64 individuals such as standard deviations across samples were more than 0.3. The unsupervised hierarchical clustering of DNA methylation data from 567 CpG sites generated 4 clusters (clusters 1-4) with distinct molecular and clinical characteristics. Cluster 1 or 2 was the lowest or highest methylation level, respectively. Clusters 3 and 4 showed intermediate methylation level. Cluster 1 was characterized by RUNX1-RUNX1T1 and KMT2A rearrangement with low MECOM expression, which are known as favorable prognostic factors. Clusters 2 and 4 were composed of patients with the molecular features showing adverse outcome such as FLT3-ITD, KMT2A-PTD and/or normal karyotype with high PRDM16 expression. Interestingly, KMT2A rearrangement with high MECOM expression, considered as the adverse prognostic factor, were included in clusters 2 or 4. As for KMT2A rearrangement, nine of 15 patients with KMT2A rearrangement harbored KMT2A-MLLT3. Of these, five of nine classified into the hypomethylation group, and all five patients had no event. On the other hand, remaining four patients with KMT2A-MLLT3 all relapsed. All patients with normal karyotype with CEBPA biallelic mutations considered as the favorable factor were found in cluster 3. When we focused on CpG sites with significant difference in their methylation values between patients with and without FLT3-ITD, 15 FLT3-ITD patients were divided into two clusters (clusters A and B) by the hierarchical clustering. Remarkably, 8 FLT3-ITD positive patients in cluster A showed significantly worse overall survival (OS) and event-free survival (EFS) when compared with those in cluster B (5-year OS, 13% vs. 100%, P = 0.002; 5-year EFS 0% vs. 86%, P < 0.001). Next, 244 CpG sites significantly associated with PRDM16 expression were extracted to investigate the relationship between PRDM16 expression and DNA methylation profiles. Interestingly, patients with high and low PRDM16 expression showed distinct methylation pattern, respectively. Furthermore, most of hypermethylated sites gene were PRDM16 gene body in patients with high PRDM16 expression and located at important regions which were the targets of repressed polycomb in reference cells. As for 567 CpG sites which were used for the unsupervised hierarchical clustering, 168 of 567 (30%) CpG sites colocalized at bivalent promoter regions in reference leukemic blast cells, and the hypermethylation of bivalent promoter regions tended to be related to worse outcome. These results indicate DNA methylation plays key role for leukemogenesis and is remarked as a novel biomarker to predict prognosis. Disclosures Ogawa: ChordiaTherapeutics, Inc.: Consultancy, Equity Ownership; RegCell Corporation: Equity Ownership; Kan Research Laboratory, Inc.: Consultancy; Asahi Genomics: Equity Ownership; Qiagen Corporation: Patents & Royalties; Dainippon-Sumitomo Pharmaceutical, Inc.: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document