scholarly journals Microbial community characterization of shrimp survivors to AHPND challenge test treated with an effective shrimp probiotic (Vibrio diabolicus)

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Leda Restrepo ◽  
Cristóbal Domínguez-Borbor ◽  
Leandro Bajaña ◽  
Irma Betancourt ◽  
Jenny Rodríguez ◽  
...  

Abstract Background Acute hepatopancreatic necrosis disease (AHPND) is an important shrimp bacterial disease caused by some Vibrio species. The severity of the impact of this disease on aquaculture worldwide has made it necessary to develop alternatives to prophylactic antibiotics use, such as the application of probiotics. To assess the potential to use probiotics in order to limit the detrimental effects of AHNPD, we evaluated the effect of the ILI strain, a Vibrio sp. bacterium and efficient shrimp probiotic, using metabarcoding (16S rRNA gene) on the gastrointestinal microbiota of shrimp after being challenged with AHPND-causing V. parahaemolyticus. Results We showed how the gastrointestinal microbiome of shrimp varied between healthy and infected organisms. Nevertheless, a challenge of working with AHPND-causing Vibrio pathogens and Vibrio-related bacteria as probiotics is the potential risk of the probiotic strain becoming pathogenic. Consequently, we evaluated whether ILI strain can acquire the plasmid pV-AHPND via horizontal transfer and further cause the disease in shrimp. Conjugation assays were performed resulting in a high frequency (70%) of colonies harboring the pv-AHPND. However, no shrimp mortality was observed when transconjugant colonies of the ILI strain were used in a challenge test using healthy shrimp. We sequenced the genome of the ILI strain and performed comparative genomics analyses using AHPND and non-AHPND Vibrio isolates. Using available phylogenetic and phylogenomics analyses, we reclassified the ILI strain as Vibrio diabolicus. In summary, this work represents an effort to study the role that probiotics play in the normal gastrointestinal shrimp microbiome and in AHPND-infected shrimp, showing that the ILI probiotic was able to control pathogenic bacterial populations in the host's gastrointestinal tract and stimulate the shrimp’s survival. The identification of probiotic bacterial species that are effective in the host’s colonization is important to promote animal health and prevent disease. Conclusions This study describes probiotic bacteria capable of controlling pathogenic populations of bacteria in the shrimp gastrointestinal tract. Our work provides new insights into the complex dynamics between shrimp and the changes in the microbiota. It also addresses the practical application of probiotics to solve problems with pathogens that cause high mortality-rate in shrimp farming around the world.

2019 ◽  
Vol 97 (9) ◽  
pp. 3741-3757 ◽  
Author(s):  
Nirosh D Aluthge ◽  
Dana M Van Sambeek ◽  
Erin E Carney-Hinkle ◽  
Yanshuo S Li ◽  
Samodha C Fernando ◽  
...  

Abstract A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1157 ◽  
Author(s):  
Katarzyna Petka ◽  
Tomasz Tarko ◽  
Aleksandra Duda-Chodak

The impact of acrylamide (AA) on microorganisms is still not clearly understood as AA has not induced mutations in bacteria, but its epoxide analog has been reported to be mutagenic in Salmonella strains. The aim of the study was to evaluate whether AA could influence the growth and viability of beneficial intestinal bacteria. The impact of AA at concentrations of 0–100 µg/mL on lactic acid bacteria (LAB) was examined. Bacterial growth was evaluated by the culture method, while the percentage of alive, injured, and dead bacteria was assessed by flow cytometry after 24 h and 48 h of incubation. We demonstrated that acrylamide could influence the viability of the LAB, but its impact depended on both the AA concentration and the bacterial species. The viability of probiotic strain Lactobacillus acidophilus LA-5 increased while that of Lactobacillus plantarum decreased; Lactobacillus brevis was less sensitive. Moreover, AA influenced the morphology of L. plantarum, probably by blocking cell separation during division. We concluded that acrylamide present in food could modulate the viability of LAB and, therefore, could influence their activity in food products or, after colonization, in the human intestine.


2018 ◽  
Vol 4 ◽  
Author(s):  
Luiz Ricardo Gonçalves ◽  
Marta Maria Geraldes Teixeira ◽  
Adriana Carlos Rodrigues ◽  
Natalia Serra Mendes ◽  
Carlos Antonio Matos ◽  
...  

AbstractThe African buffalo (Syncerus caffer), a mammal species whose population is declining, can play a role as a reservoir or carrier of a wide number of arthropod-borne pathogens. Translocation procedures have been used as an alternative approach for species conservation. However, the veterinary aspects of this sort of procedures are extremely important to minimize the impact on animal health. In order to detectBartonellaand haemoplasmas, two important group of bacterial that have an impact in both human and animal health, EDTA whole-blood samples were screened for the presence of these bacterial pathogens by molecular techniques. As a result, a molecular occurrence of 4.1 and 15.4% forBartonellaspp. and haemoplasmas, respectively, was reported among 97 wild buffaloes sampled during a translocation procedure from Marromeu to Gorongosa Reserve, Mozambique. Additionally, phylogenetic analyses of the obtained sequences were conducted. At least, three bovine-associated pathogens, namelyB. bovis,M. wenyoniiand ‘CandidatusM. haemobos’, as well as a probably newBartonellagenotype/species were detected inS. caffer.Further studies are needed in order to determine whether these bacterial species may cause impact in buffaloes and other sympatric ruminant species living in the release site.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Bong-Soo Kim ◽  
Jong Nam Kim ◽  
Carl E. Cerniglia

A stable intestinal microbiota is important in maintaining human physiology and health. Although there have been a number of studies usingin vitroandin vivoapproaches to determine the impact of diet and xenobiotics on intestinal microbiota, there is no consensus for the bestin vitroculture conditions for growth of the human gastrointestinal microbiota. To investigate the dynamics and activities of intestinal microbiota, it is important for the culture conditions to support the growth of a wide range of intestinal bacteria and maintain a complex microbial community representative of the human gastrointestinal tract. Here, we compared the bacterial community in three culture media: brain heart infusion broth and high- and low-carbohydrate medium with different growth supplements. The bacterial community was analyzed using denaturing gradient gel electrophoresis (DGGE), pyrosequencing and real-time PCR. Based on the molecular analysis, this study indicated that the 3% fecal inoculum in low-concentration carbohydrate medium with 1% autoclaved fecal supernatant provided enhanced growth conditions to conductin vitrostudies representative of the human intestinal microbiota.


Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 452
Author(s):  
Sarmad G. Al-Shawi ◽  
David S. Dang ◽  
Asraa Y. Yousif ◽  
Zena K. Al-Younis ◽  
Teif A. Najm ◽  
...  

To address the rapidly growing use of probiotics in animal agriculture, this review discusses the effect of probiotics on animal growth and development, immune response, and productivity. Several benefits have been associated with the use of probiotics in farm animals, such as improved growth and feed efficiency, reduced mortality, and enhanced product quality. While the mechanisms through which probiotics induce their beneficial effects are not well understood, their role in modifying the gastrointestinal microbiota is believed to be the main mechanism. The use of probiotics in fresh and fermented meat products has been also shown to reduce pathogenic and spoilage microorganisms and improve sensory characteristics. Although many benefits have been associated with the use of probiotics, their effectiveness in improving animal performance and product quality is highly variable. Factors that dictate such variability are dependent on the probiotic strain being utilized and its stability during storage and administration/inoculation, frequency and dosage, nutritional and health status as well as age of the host animal. Therefore, future research should focus on finding more effective probiotic strains for the desired use and identifying the optimum dose, administration time, delivery method, and mechanism of action for each strain/host.


mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Christian Zenner ◽  
Thomas C. A. Hitch ◽  
Thomas Riedel ◽  
Esther Wortmann ◽  
Stefan Tiede ◽  
...  

ABSTRACT The gut microbiome is crucial for both maturation of the immune system and colonization resistance against enteric pathogens. Although chicken are important domesticated animals, the impact of their gut microbiome on the immune system is understudied. Therefore, we investigated the effect of microbiome-based interventions on host mucosal immune responses. Increased levels of IgA and IgY were observed in chickens exposed to maternal feces after hatching compared with strict hygienic conditions. This was accompanied by increased gut bacterial diversity as assessed by 16S rRNA gene amplicon sequencing. Cultivation work allowed the establishment of a collection of 43 bacterial species spanning 4 phyla and 19 families, including the first cultured members of 3 novel genera and 4 novel species that were taxonomically described. This resource is available at www.dsmz.de/chibac. A synthetic community consisting of nine phylogenetically diverse and dominant species from this collection was designed and found to be moderately efficient in boosting immunoglobulin levels when provided to chickens early in life. IMPORTANCE The immune system plays a crucial role in sustaining animal health. Its development is markedly influenced by early microbial colonization of the gastrointestinal tract. As chicken are fully dependent on environmental microbes after hatching, extensive hygienic measures in production facilities are detrimental to the microbiota, resulting in low colonization resistance against pathogens. To combat enteric infections, antibiotics are frequently used, which aggravates the issue by altering gut microbiota colonization. Intervention strategies based on cultured gut bacteria are proposed to influence immune responses in chicken.


This article presents the results of studying the impact of housing and feeding conditions on broiler chickens of Hubbard RedBro cross, as well as the quality of products obtained when using floor and cage content, in a farm. It established that when receiving a mixed feed of own production using feed raw materials grown on a farm without the use of pesticides, a statistically significant decrease in potentially dangerous substances for animal health is recorded. Compared with factory feed, it has reduced the content of pesticides by 14 times, and mercury and arsenic by 24 times, cadmium by five times, and lead by ten times. The results of the study of economic indicators of growing Hubbard RedBro cross broiler chickens, as well as the chemical composition and quality of carcasses, indicated that there was no significant difference between the floor and cell conditions of keeping. Still, the use of a diet based on eco-feeds contributed to a statistically significant decrease in the concentration of toxic metals in the muscles of the poultry of the experimental groups. As a result, it found that the use of the studied compound feed in the diets of broiler chickens increased the indicators of Biosafety and ensured the production of environmentally safe ("organic") poultry meat products.


Livestock ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 176-179
Author(s):  
Chris Lloyd

The Responsible Use of Medicines in Agriculture Alliance (RUMA) was established to promote the highest standards of food safety, animal health and animal welfare in the British livestock industry. It has a current focus to deliver on the Government objective of identifying sector-specific targets for the reduction, refinement or replacement of antibiotics in animal agriculture. The creation and roll out of sector specific targets in 2017 through the RUMA Targets Task Force, has helped focus activity across the UK livestock sectors to achieve a 50% reduction in antibiotic use since 2014. This has been realised principally through voluntary multi-sector collaboration, cross sector initiatives, codes of practice, industry body support and farm assurance schemes. This article provides an overview of RUMA's work to date providing insight into the methods used to create the targets, why they are so important, the impact they are having and how ongoing support and robust data are vital components in achieving the latest set of targets.


2021 ◽  
Vol 9 (5) ◽  
pp. 1037
Author(s):  
Craig Resch ◽  
Mihir Parikh ◽  
J. Alejandro Austria ◽  
Spencer D. Proctor ◽  
Thomas Netticadan ◽  
...  

There is an increased interest in the gut microbiota as it relates to health and obesity. The impact of diet and sex on the gut microbiota in conjunction with obesity also demands extensive systemic investigation. Thus, the influence of sex, diet, and flaxseed supplementation on the gut microbiota was examined in the JCR:LA-cp rat model of genetic obesity. Male and female obese rats were randomized into four groups (n = 8) to receive, for 12 weeks, either (a) control diet (Con), (b) control diet supplemented with 10% ground flaxseed (CFlax), (c) a high-fat, high sucrose (HFHS) diet, or (d) HFHS supplemented with 10% ground flaxseed (HFlax). Male and female JCR:LA-cp lean rats served as genetic controls and received similar dietary interventions. Illumine MiSeq sequencing revealed a richer microbiota in rats fed control diets rather than HFHS diets. Obese female rats had lower alpha-diversity than lean female; however, both sexes of obese and lean JCR rats differed significantly in β-diversity, as their gut microbiota was composed of different abundances of bacterial types. The feeding of an HFHS diet affected the diversity by increasing the phylum Bacteroidetes and reducing bacterial species from phylum Firmicutes. Fecal short-chain fatty acids such as acetate, propionate, and butyrate-producing bacterial species were correspondingly impacted by the HFHS diet. Flax supplementation improved the gut microbiota by decreasing the abundance of Blautia and Eubacterium dolichum. Collectively, our data show that an HFHS diet results in gut microbiota dysbiosis in a sex-dependent manner. Flaxseed supplementation to the diet had a significant impact on gut microbiota diversity under both flax control and HFHS dietary conditions.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2058
Author(s):  
Nicole Reisinger ◽  
Dominik Wendner ◽  
Nora Schauerhuber ◽  
Elisabeth Mayer

Endotoxins play a crucial role in ruminant health due to their deleterious effects on animal health. The study aimed to evaluate whether LPS and LTA can induce an inflammatory response in rumen epithelial cells. For this purpose, epithelial cells isolated from rumen tissue (RECs) were stimulated with LPS and LTA for 1, 2, 4, and 24 h. Thereafter, the expression of selected genes of the LPS and LTA pathway and inflammatory response were evaluated. Furthermore, it was assessed whether LPS affects inflammatory response and structural integrity of claw explants. Therefore, claw explants were incubated with LPS for 4 h to assess the expression of selected genes and for 24 h to evaluate tissue integrity via separation force. LPS strongly affected the expression of genes related to inflammation (NFkB, TNF-α, IL1B, IL6, CXCL8, MMP9) in RECs. LTA induced a delayed and weaker inflammatory response than LPS. In claw explants, LPS affected tissue integrity, as there was a concentration-dependent decrease of separation force. Incubation time had a strong effect on inflammatory genes in claw explants. Our data suggest that endotoxins can induce a local inflammatory response in the rumen epithelium. Furthermore, translocation of LPS might negatively impact claw health.


Sign in / Sign up

Export Citation Format

Share Document