scholarly journals The Wnt signaling pathway in tumorigenesis, pharmacological targets, and drug development for cancer therapy

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhuo Wang ◽  
Tingting Zhao ◽  
Shihui Zhang ◽  
Junkai Wang ◽  
Yunyun Chen ◽  
...  

AbstractWnt signaling was initially recognized to be vital for tissue development and homeostasis maintenance. Further studies revealed that this pathway is also important for tumorigenesis and progression. Abnormal expression of signaling components through gene mutation or epigenetic regulation is closely associated with tumor progression and poor prognosis in several tissues. Additionally, Wnt signaling also influences the tumor microenvironment and immune response. Some strategies and drugs have been proposed to target this pathway, such as blocking receptors/ligands, targeting intracellular molecules, beta-catenin/TCF4 complex and its downstream target genes, or tumor microenvironment and immune response. Here we discuss the roles of these components in Wnt signaling pathway in tumorigenesis and cancer progression, the underlying mechanisms that is responsible for the activation of Wnt signaling, and a series of drugs targeting the Wnt pathway provide multiple therapeutic values. Although some of these drugs exhibit exciting anti-cancer effect, clinical trials and systematic evaluation should be strictly performed along with multiple-omics technology.

2000 ◽  
Vol 14 (14) ◽  
pp. 1741-1749 ◽  
Author(s):  
Ken-ichi Tago ◽  
Tsutomu Nakamura ◽  
Michiru Nishita ◽  
Junko Hyodo ◽  
Shin-ichi Nagai ◽  
...  

Wnt signaling has an important role in both embryonic development and tumorigenesis. β-Catenin, a key component of the Wnt signaling pathway, interacts with the TCF/LEF family of transcription factors and activates transcription of Wnt target genes. Here, we identify a novel β-catenin-interacting protein, ICAT, that was found to inhibit the interaction of β-catenin with TCF-4 and represses β-catenin–TCF-4-mediated transactivation. Furthermore, ICAT inhibited Xenopus axis formation by interfering with Wnt signaling. These results suggest that ICAT negatively regulates Wnt signaling via inhibition of the interaction between β-catenin and TCF and is integral in development and cell proliferation.


2008 ◽  
Vol 105 (40) ◽  
pp. 15417-15422 ◽  
Author(s):  
Jennifer A. Kennell ◽  
Isabelle Gerin ◽  
Ormond A. MacDougald ◽  
Ken M. Cadigan

Wnt signaling plays many important roles in animal development. This evolutionarily conserved signaling pathway is highly regulated at all levels. To identify regulators of the Wnt/Wingless (Wg) pathway, we performed a genetic screen in Drosophila. We identified the microRNA miR-8 as an inhibitor of Wg signaling. Expression of miR-8 potently antagonizes Wg signaling in vivo, in part by directly targeting wntless, a gene required for Wg secretion. In addition, miR-8 inhibits the pathway downstream of the Wg signal by repressing TCF protein levels. Another positive regulator of the pathway, CG32767, is also targeted by miR-8. Our data suggest that miR-8 potently antagonizes the Wg pathway at multiple levels, from secretion of the ligand to transcription of target genes. In addition, mammalian homologues of miR-8 promote adipogenesis of marrow stromal cells by inhibiting Wnt signaling. These findings indicate that miR-8 family members play an evolutionarily conserved role in regulating the Wnt signaling pathway.


2019 ◽  
Vol 121 (3) ◽  
pp. 2268-2276 ◽  
Author(s):  
Bo Yang ◽  
Qingqing Bai ◽  
Huidong Chen ◽  
Kun Su ◽  
Chao Gao

2020 ◽  
Vol 21 (16) ◽  
pp. 5901
Author(s):  
Te-Sheng Chang ◽  
Chung-Kuang Lu ◽  
Yung-Yu Hsieh ◽  
Kuo-Liang Wei ◽  
Wei-Ming Chen ◽  
...  

Gastric cancer (GC) is among the most treatment-refractory epithelial malignancies. Aberrant activation of Wnt/β-catenin-signaling has been implicated in a variety of human cancers, including gastric cancer. Here we report that the elevated expression of lymphoid enhancer binding factor 1 (Lef1) is associated with the TNM (tumor– node–metastasis) stage of gastric cancer. Subsequently, 2,4-diamino-quinazoline (2,4-DAQ), a selective inhibitor of Lef1, was identified to suppress the expression of Wnt/β-catenin target genes such as AXIN2, MYC and LGR5 and result in the suppression of gastric cancer cell growth through the apoptotic pathway. The 2,4-DAQ also exhibited an inhibitory effect on the migration/invasion of gastric cancer cells. Importantly, the treatment of human gastric tumor xenograft with 2,4-DAQ suppressed tumor growth in a nude mouse model. Furthermore, 2,4-DAQ appears effective on patient-derived organoids (PDOs). Transcriptome sequencing analysis also revealed that 2,4-DAQ are more effective on the gastric cancers that exhibit higher expression levels of Wnt-signaling pathway-related genes than their adjacent normal gastric tissues.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3038-3038 ◽  
Author(s):  
Joo Young Cha ◽  
Ji-Eun Jung ◽  
Kwan-Hoo Lee ◽  
Isabelle Briaud ◽  
Fnu Tenzin ◽  
...  

Abstract Abstract 3038 Multiple myeloma (MM), one of the most incurable hematological malignancies in adults, is a disorder of plasma cells characterized by accumulation of clonal proliferation of malignant plasma cells in the bone marrow (BM). Overexpression of beta-catenin, the downstream effector of the canonical Wnt signaling pathway, has been reported in both MM cell lines and patient samples. Activated Wnt signaling pathway has also been reported to play a critical role in progression of MM cell proliferation, thus highlighting the need for new therapeutic approaches, particularly those targeting Wnt molecular pathway. Here we report the discovery of a novel inhibitor of Wnt signaling CWP232291, which promotes degradation of beta-catenin. CWP232291 exhibits potent growth inhibitory activity in several MM cell lines (RPMI-8226, OPM-2, NCI-H929, JJN3, and EJM) with IC50 values of 13 – 73 nM. The inhibitory activity of CWP232291 on Wnt signaling is demonstrated by reporter gene assay and by its effect in down-regulation of Wnt target genes. Using HEK293 cells, CWP232291 treatment dose dependently reduces promoter activity of TOPflash induced by Wnt-3a-Conditioned Media, at a calculated IC50 value of 273 nM. Furthermore, MM cells treated with CWP232291 show downregulated expression of Wnt target genes such as survivin by triggering degradation of beta-catenin. Treatment of these cells with CWP232291 results in activation of caspase-3 and PARP cleavage, indicating induction of apoptosis. To investigate the potential in vivo anti-tumor efficacy of CWP232291, we utilized two MM tumor bearing mice models. Daily or intermittent intravenous (i.v.) administration of CWP232291 led to significant tumor growth inhibition (TGI) in OPM-2 (50 mg/kg, qdx5: regression and 100 mg/kg, biw: 95% TGI) and RPMI-8226 (100 mg/kg, qdx5: regression and 100 mg/kg tiw: 80% TGI) xenograft model with no obvious change in body weight. The anti-tumor efficacies of CWP232291 were dose-dependent and had strong correlations with degradation of beta-catenin in the tumor samples. Potent induction of apoptosis through cleavage of Caspase-3 and PARP and significant decrease of plasma M protein levels in OPM-2 tumor bearing mice were detected as early as 2 and up to 24 hours after single i.v. administration of CWP232291. Taken together, these data clearly demonstrate the impressive anti-tumor profile of CWP232291 with a good therapeutic window and suggest a potential therapeutic application of CWP232291 for the treatment of MM. Disclosures: Cha: Choongwae Pharma Corp.: Employment. Jung:Choongwae Pharma Corp.: Employment. Lee:Choongwae Pharma Corp.: Employment. Briaud:Theriac Pharmaceutical Corp.: Employment. Tenzin:Theriac Pharmaceutical Corp.: Employment. Jung:Choongwae Pharma Corp.: Employment. Pyon:Choongwae Pharma Corp.: Employment. Lee:Choongwae Pharma Corp.: Employment. Chung:Choongwae Pharma Corp.: Employment. Lee:Choongwae Pharma Corp.: Employment. Oh:Choongwae Pharma Corp.: Employment. Jung:Choongwae Pharma Corp.: Employment. Pai:Choongwae Pharma Corp.: Employment. Emami:Theriac Pharmaceutical Corp.: Employment.


2001 ◽  
Vol 12 (2) ◽  
pp. 152-165 ◽  
Author(s):  
Lorenzo Lo Muzio

Reductions in cell-cell adhesion and stromal and vascular invasion are essential steps in the progression from localized malignancy to metastatic disease for all cancers. Proteins involved in intercellular adhesion, such as E-cadherin and catenin, probably play an important role in metastatic processes and cellular differentiation. While E-cadherin and beta-catenin expression has been extensively studied in many forms of human cancers, less is known about the role of the Wingless-Type-1 (WNT-1 ) pathway in human tumors. A large body of genetic and biochemical evidence has identified beta-catenin as a key downstream component of the WNT signaling pathway, and recent studies of colorectal tumors have shown a functional link among beta-catenin, adenomatous polyposis coli gene product (APC), and other components of the WNT-1 pathway. WNT-1 pathway signaling is thought to be mediated via interactions between beta-catenin and members of the LEF-1/TCF family of transcription factors. The WNT signal stabilizes beta-catenin protein and promotes its accumulation in the cytoplasm and nucleus. In the nucleus, beta-catenin associates with TCF to form a functional transcription factor which mediates the transactivation of target genes involved in the promotion of tumor progression, invasion, and metastasis, such as C-Myc, cyclin DI, c-jun, fra-1, and u-PAR. There is a strong correlation between the ability of the WNT-1 gene to induce beta-catenin accumulation and its transforming potential in vivo, suggesting that the WNT-1 gene activates an intracellular signaling pathway that can induce the morphological transformation of cells. For these reasons, data obtained from the study of the WNT-1 pathway could be important in our understanding of the mechanisms of epithelial tumors, in general, and probably also of oral squamous cell carcinoma, in particular.


2018 ◽  
Vol 314 (3) ◽  
pp. F329-F342 ◽  
Author(s):  
Eui-Jung Park ◽  
Hyun Jun Jung ◽  
Hyo-Jung Choi ◽  
Jeong-In Cho ◽  
Hye-Jeong Park ◽  
...  

Mineralocorticoids trigger a profibrotic process in the kidney. In mouse cortical collecting duct cells, the present study addressed two main questions: 1) what are microRNAs (miRNAs) and their target genes that are changed by aldosterone? and 2) what do miRNAs, in response to aldosterone, regulate regarding signaling pathways related to fibrosis? A microarray chip assay was done in cells in the absence or presence of aldosterone treatment (10−6M; 3 days). The candidate miRNAs were identified by the criteria of >30% of fold change among the significantly changed miRNAs ( P < 0.05). Twenty-nine miRNAs were upregulated (>1.3-fold), and 27 miRNAs were downregulated (<0.7-fold). Putative target genes of identified miRNAs were associated with 74 Kyoto Encyclopedia of Genes and Genomes pathways. Among them, the wingless-related integration site (Wnt) signaling pathway was highly ranked, where 15 mature miRNAs were observed. These miRNAs were further analyzed by real-time quantitative PCR, and among them, miR-130b-3p, miR-34c-5p, and miR-146a-5p were selected. Through the identification of putative target genes of these three miRNAs, mRNA and protein expression of the Ca2+/calmodulin-dependent protein kinase type II β-chain ( Camk2b) gene (a target gene of miR-34c-5p) were found to be increased significantly in aldosterone-treated cells, where fibronectin (FN) and α-smooth muscle actin were induced. When CaMKIIβ small interfering RNA or the miR-34c-5p mimic was transfected, aldosterone-induced FN expression was significantly attenuated, along with reduced CaMKIIβ protein expression. A luciferase reporter assay revealed a decrease of CaMKIIβ translation in cells transfected with miRNA mimics of miR-34c-5p. In conclusion, aldosterone-induced downregulation of miR-34c-5p in the Wnt signaling pathway and a consequent increase of CaMKIIβ expression are likely to be involved in aldosterone-induced fibrosis.


Sign in / Sign up

Export Citation Format

Share Document