scholarly journals Research on the composite and functional characteristics of leather fiber mixed with nitrile rubber

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Guo Jun ◽  
Dai Rui ◽  
Chen Hui ◽  
Liang Yan ◽  
Shan Zhihua

Abstract The recycling of leather solid waste not only involves resource utilization and environmental protection but also has important significance for the sustainable development of the leather industry. In this paper, the leather waste was crushed into fibers, which were stabilized and mixed with nitrile-butadiene rubber (NBR). The mixture was milled and vulcanized and a composite NBR-SLF (Stabilized Leather Fiber) is prepared for sealing material. The physical and mechanical properties, water resistance, oil resistance and aging resistance of NBR-SLF were tested and analyzed. It is found that the optimized NBR-SLF not only reduces the cost of raw material, but also changes the physical and mechanical performance of NBR. As a sealing material, it satisfies the substitution of NBR in terms of hardness and thermal stability. Especially the anti-aging ability is better than NBR. Graphical abstract

2013 ◽  
Vol 274 ◽  
pp. 385-388
Author(s):  
Ji Peng Zhang ◽  
Hui Tang ◽  
Shan Shan Hao

To reduce the cost of HDPE optical cable sheath, we selected HDPE as matrix materials, inorganic nanometer particles (CaCO3, SiO2) as modifier, prepared the modified HDPE optical cable sheath by mechanical blending method. The combination of CaCO3 particles with HDPE matrix was improved by titanate doped, which was able to facilitate the homogeneous dispersion of CaCO3 particles inside HDPE. To modify the optical cable sheath and reduce the product cost, the disparity of the inorganic nano-particle was analyzed, and the ratio of raw material and mixing technology were also improved. The experimental results indicated that: the sheathing compound with insulating characteristic as well as all technical indexes that reached its national standard, especially the toughening effect of the CaCO3, could be produced when CaCO3 content reached 7.5% and the volume resistivity was 104 times higher than the national standard. The mechanical modification of CaCO3 was better than SiO2.


2011 ◽  
Vol 471-472 ◽  
pp. 31-36 ◽  
Author(s):  
Taghi Tabarsa

In this study feasibility of using of mixture of bagasse and industrial wood particles for producing single and three layer particleboard . The aim of this study was to consider bagasse as partially substitute particleboard industry raw material. Variables were type of board at two levels (single and three layer), percentage of added bagasse to industrial particles at 4 levels (20%,30%, 40% and 50%) , and press temp. at two levels (165OC and 180 OC ). In producing three layer particleboard wood and bagasse particles were separated and placed in different layers so that bagasse particles were located in the face layers and wood particles were placed in the core of board. But in one layer particleboard bagasse and wood particles were used in the form of mixture. Effect of variables on physical and mechanical properties of particleboard were determined. Results showed that in three layer particleboard physical and mechanical properties were better than single layer particleboard. Increasing press temperature caused improvement in particleboard properties in most cases due to intermeshing and increasing softening wood and bagasse particles. The optimum treatment in this study was found to be adding 50% bagasse and press temperature of 180 OC.


2011 ◽  
Vol 356-360 ◽  
pp. 510-513 ◽  
Author(s):  
Gui Xiang Quan ◽  
Jin Long Yan ◽  
Cheng Ding

Carbon materials possess special structural and fascinating functions. The use of biomass raw material to produce a variety of carbon materials can reduce the cost of production, and also achieve the sustainable development of carbon materials. A series of biomass carbon adsorbent were prepared by controlling the different carbonization temperatures (100 ~ 700 °C) using rice husk as the representatives of biomass, and the structure of these obtained biomass carbon were characterized by FT-IR. Adsorption properties of p-chlorophenol on the biomass carbon were also investigated. Results shown that the C/H and C/O values were decreased with the increasing carbonization temperatures, with the increasing of aromatic fractions in the biomass carbon materials. p-Chlorophenol was significantly adsorbed on the surface of these biomass carbon, the higher adsorption capacity was found in the biomass carbon produced with higher carbonization temperatures. The obtained results can be used for the further research in the study of adsorption properties and mechanism of biomass carbon in wastewater treatment.


2021 ◽  
Vol 43 (3) ◽  
pp. 65-70
Author(s):  
G.G. Geletukha ◽  
Yu.B. Matveev

Biogas upgrading to quality of natural gas (NG) creates possibility to supply biomethane to the NG grid, easy transportation and production of electricity and heat in locations where there is guaranteed consumption of thermal energy. Biomethane as a close NG analogue can be used for heat and electricity production, as soon as motor fuel and raw material for chemical industry. The International Energy Agency (IEA) estimates that the world's annual biomethane production potential is 730 bcm (20% of current world's NG consumption). World biomethane production reached almost 5 bcm/yr in 2019. According to forecast of the European Biogas Association the biogas and biomethane sector may almost double its production by 2030. According to IEA estimates, annual world biomethane production could reach 200 bcm in 2040 in case the sustainable development strategy is implemented Currently, the Bioenergy Association of Ukraine estimates the potential for biogas/biomethane production in Ukraine using fermentation technology as 7,8 bcm/yr (25% of the country's current NG consumption). The roadmap of bioenergy development in Ukraine until 2050 envisages growth of biomethane production to 1,7 bcm in 2035 and up to 3 bcm in 2050. Currently the prospects for green hydrogen development are well known. The authors support the need of hydrogen technologies as one of the way for production and use of renewable gases. However, they believe that biomethane has no less prospects. Transporting of one cubic meter of biomethane through gas pipeline at 60 bar pressure transmits almost four times more energy than transporting of one cubic meter of hydrogen. This is fundamental advantage of biomethane. Another advantage is the full readiness of gas infrastructure for biomethane. Given the cost of gas infrastructure modernization to use hydrogen, it is more cost-effective to convert green hydrogen to synthetic methane. Currently, biomethane is in average three times cheaper than green hydrogen, the cost of the two renewable gases is expected to equalize by 2050, and only further possible reduction in the cost of green hydrogen below $2/kg will make green hydrogen cheaper than biomethane. Therefore, the greatest prospects can be seen in the combination of the advantages of both renewable gases and conversion of green hydrogen into synthetic methane (power-to-gas process). Authors believe that after adoption of legislation to support the development of biomethane production and use in Ukraine, the bulk of biomethane produced in the country will be exported to EU, where more favourable conditions for biomethane consumption are developed. As Ukraine's economy grows, more and more of the biomethane produced will be used for domestic consumption.


2014 ◽  
Vol 21 (3) ◽  
pp. 309-314 ◽  
Author(s):  
Qilei Wang

AbstractIn order to produce a rubber sealing material with decent physical and mechanical properties, heat resistance, and flame retardance, a nano MH/GF/NBR composite material was made by using nitrile butadiene rubber (NBR), glass fiber (GF), and nano magnesium hydroxide (MH). The physical and mechanical performances, heat resistance, and flame retardance of the composite material were investigated for different fractions of nano MH and GF. The results showed that nano MH reinforces the internal structure of the composite material. The bond strength between GF and the rubber matrix decreases with the increase in the amount of GF in the composite. The proportion of nano MH and GF can improve the physical and mechanical performances of NBR. The tensile strength, tear strength, permanent compression deformation, and hardness also increase. The nano MH/GF composite has good flame retardance, which improves the thermal stability of NBR. Additionally, the total smoke production of the composite material is reduced and the lifetime of the material is extended. The results established a foundation for further applications using the nano MH/GF/NBR composite material as a sealant.


2021 ◽  
Vol 11 (4) ◽  
pp. 1604
Author(s):  
Petr Klímek ◽  
Rupert Wimmer ◽  
Peter Meinlschmidt

Cup-plant (Silphium perfoliatum L.) stalks were investigated as a potential wood-replacement in particleboards (PBs). Two types of PBs were produced—(1) single-layer and (2) three-layer boards. In the three-layer cup-plant PB, the core layer was made from cup-plant, while the surface layer consisted of spruce particles. The cup-plant as well as spruce control panels were produced with polymeric methylene diphenyl diisocyanate (pMDI) as the adhesive, with the physical and mechanical properties measured to meet class P1 of the European EN 312 standard. For the intrinsic morphology of the particleboards, scanning electron microscopy was applied. Wood-based and cup-plant-based particleboards indicated significant differences in morphology that affect the resulting properties of particleboards. Furthermore, an innovative approach was used in the determination of the pMDI bondline morphology. With a compact Time-of-Flight Secondary Ion Mass analyser, integrated in a multifunctional focused-ion beam scanning-electron-microscope, it was possible to show that the Ga+ ion source could be detect and visualize in 3D ion molecular clusters specific to pMDI adhesive and wood. Mechanical performance data showed that cup-plant particleboards performed well, even though their properties were below the spruce-made controls. Especially the modulus of rupture (MOR) of the cup-plant PB was lowered by 40%, as compared to the spruce-made control board. Likewise, thickness swelling of cup-plant made boards was higher than the control. Results were linked to the specific porous structure of the cup-plant material. In contrast, it was shown that three-layer cup-plant PB had a higher MOR and also a higher modulus of elasticity, along with lower thickness swelling, compared to its single-layer cup-plant counterpart. The industry relevant finding was that the three-layer PB made from cup-plant stalks fulfilled the EN 312 standard, class P1 (usage in dry conditions). It was shown that raw material mixtures could be useful to improve the mechanical panel performance, also with an altered vertical density profile.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (11) ◽  
pp. 37-43 ◽  
Author(s):  
LIISA KOTANEN ◽  
MIKA KÖRKKÖ ◽  
ARI ÄMMÄLÄ ◽  
JOUKO NIINIMÄKI

The use of recovered paper as a raw material for paper production is by far the most economical and ecological strategy for the disposal of waste paper. However, paper production from recovered paper furnish generates a great amount of residues, and the higher the demand requirements for the end product, the higher the amount of rejected material. The reason for this is that the selectivity of the deinking process is limited; therefore, some valuable components are also lost in reject streams. The rejection of usable components affects the economics of recycled paper production. As the cost of waste disposal continues to increase, this issue is becoming more and more severe. This paper summarizes the current state of the resource efficiency in recycled pulp production and provides information on the volumes of rejected streams and the usable material within them. Various means to use these reject streams are also discussed, including the main findings of a recent thesis by the main author. This review summarizes current internal and external use of reject streams generated in the deinking operations.


Author(s):  
SAFITRI NURHIDAYATI ◽  
RIZKI AMELYA SYAM

This study aims to analyze whether the difference that occurs in the cost of raw materials, direct labor, and factory overhead costs between the standard costs and the actual costs in PLTU LATI is a difference that is favorable or unfavorable. Data collection techniques with field research and library research. The analytical tool used is the analysis of the difference in raw material costs, the difference in direct labor costs and the difference in factory overhead costs. The hypothesis in this study is that the difference allegedly occurs in the cost of raw materials, direct labor costs, and factory overhead costs at PT Indo Pusaka Berau Tanjung Redeb is a favorable difference. The results showed that the difference in the cost of producing MWh electricity at PT Indo Pusaka Berau Tanjung Redeb in 2018, namely the difference in the price of raw material costs Rp. 548,029.80, - is favorable, the difference in quantity of raw materials is Rp. 957,216,602, - is (favorable) , the difference in direct labor costs Rp 2,602,642,084, - is (unfavorable), and the difference in factory overhead costs Rp 8,807,051,422, - is (favorable) This shows that the difference in the overall production cost budget is favorable or profitable. This beneficial difference shows that the company is really able to reduce production costs optimally in 2018.  


2021 ◽  
Vol 13 (8) ◽  
pp. 4528
Author(s):  
Olga Lingaitienė ◽  
Juozas Merkevičius ◽  
Vida Davidavičienė

The World Bank, United Nations, the Organization for Economic Cooperation and Development, and others are in line with the governments of countries that are strongly interested in the sustainable development of countries, regions, and enterprises. One of the aspects that affects the indicators and prospects of sustainable development is the efficiency of energy source use. Nationwide reductions in the greenhouse gas emissions of motor vehicles could have a direct effect on ambient temperature and reducing the effects of global warming, which can affect future environmental, societal, and economic development. Significant reductions in fuel consumption can be achieved by increasing the efficiency of use, and the performance, of current cargo vehicles. This aspect is directly related to cargo delivery systems and supply chain efficiency and effectiveness. The article solves the problem of increasing the effectiveness of cargo delivery and proposes a model that would minimize transportation costs that are directly related to fuel consumption, shortening transportation time. The model addresses the problem of a lack of models evaluating the efficiency of cargo to Lithuania that is using several different modes of transportation. For the solution to this problem, the article examines the complexity of the rational use of land and water vehicles depending on the type of cargo transported, the technical capabilities of the vehicles (loading, speed, environmental pollution, fuel consumption, etc.), and the type (cars, railways, ships). The novelty of the findings is based on the availability to select the most appropriate vehicles, on a case-by-case basis, from the available options, depending on their environmental performance and energy efficiency. This model, later in this article, is used for calculations of Lithuanian companies for selecting the most rational vehicle by identifying the most appropriate route, as well as assessing the dynamics of the economic and physical indicators. The model allows for creating dependencies between the main indicators characterizing the transport process—the cost, the time of transport, and the safety, taking into account the dynamics of economic and physical indicators, that lead to a very important issue—reducing the amount of energy required to provide products and services.


2021 ◽  
pp. 073168442110140
Author(s):  
Hossein Ramezani-Dana ◽  
Moussa Gomina ◽  
Joël Bréard ◽  
Gilles Orange

In this work, we examine the relationships between the microstructure and the mechanical properties of glass fiber–reinforced polyamide 6,6 composite materials ( V f = 54%). These materials made by thermocompression incorporate different grades of high fluidity polyamide-based polymers and two types of quasi-UD glass fiber reinforcement. One is a classic commercial fabric, while the other specially designed and manufactured incorporates weaker tex glass yarns (the spacer) to increase the planar permeability of the preform. The effects of the viscosity of the polymers and their composition on the wettability of the reinforcements were analyzed by scanning electron microscopy observations of the microstructure. The respective influences of the polymers and the spacer on the mechanical performance were determined by uniaxial tensile and compression tests in the directions parallel and transverse to the warp yarns. Not only does the spacer enhance permeability but it also improves physical and mechanical properties: tensile longitudinal Young’s modulus increased from 38.2 GPa to 42.9 GPa (13% growth), tensile strength increased from 618.9 MPa to 697 MPa (3% growth), and decrease in ultimate strain from 1.8% to 1.7% (5% reduction). The correlation of these results with the damage observed post mortem confirms those acquired from analyses of the microstructure of composites and the rheological behaviors of polymers.


Sign in / Sign up

Export Citation Format

Share Document