The thermal resistance, flame retardance, and smoke control mechanism of nano MH/GF/NBR composite material

2014 ◽  
Vol 21 (3) ◽  
pp. 309-314 ◽  
Author(s):  
Qilei Wang

AbstractIn order to produce a rubber sealing material with decent physical and mechanical properties, heat resistance, and flame retardance, a nano MH/GF/NBR composite material was made by using nitrile butadiene rubber (NBR), glass fiber (GF), and nano magnesium hydroxide (MH). The physical and mechanical performances, heat resistance, and flame retardance of the composite material were investigated for different fractions of nano MH and GF. The results showed that nano MH reinforces the internal structure of the composite material. The bond strength between GF and the rubber matrix decreases with the increase in the amount of GF in the composite. The proportion of nano MH and GF can improve the physical and mechanical performances of NBR. The tensile strength, tear strength, permanent compression deformation, and hardness also increase. The nano MH/GF composite has good flame retardance, which improves the thermal stability of NBR. Additionally, the total smoke production of the composite material is reduced and the lifetime of the material is extended. The results established a foundation for further applications using the nano MH/GF/NBR composite material as a sealant.

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1388
Author(s):  
Kenan Zhang ◽  
Hao Zhang ◽  
Linsong Liu ◽  
Yongjie Yang ◽  
Lihui Liu ◽  
...  

The aim of this work was to investigate the dispersibility of kaolinite-rich coal gangue in rubber matrix, the mechanical properties and thermal stability of coal gangue/styrene butadiene rubber (SBR) composites, and to compare these properties to those of the same coal gangue but had undergone thermal activation and modification. Several experimental techniques, such as X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric-differential scanning calorimetry (TG-DSC), laser-scattering particle analyzer were adopted to characterize the coal gangue particles and then the obtained composites. The results demonstrated the raw coal gangue (RCG) was mainly composed of kaolinite. Calcination led to amorphization of thermal activated coal gangue (ACG), increased hydrophilicity and void volume, and decreased pH. The grain size of ACG became coarser than RCG, but ACG turned loose confirmed by higher degree of refinement after grinding. Modification enhanced the hydrophobicity of the coal gangue and improved its dispersibility than fillers without modification. Calcined samples had better dispersibility than uncalcined fillers. Additionally, the coal gangue treated by calcinating, grinding and modifying (MGA) had the best dispersion in rubber matrix. Either calcination or modification could improve the mechanical properties and thermal stability of coal gangue filled rubber, while the performance of MGA reinforced SBR (MGA-SBR) was the best. The enhanced performance of the MGA-SBR was owed to better dispersion of particles as well as stronger interactions between particles and rubber macromolecules.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Guo Jun ◽  
Dai Rui ◽  
Chen Hui ◽  
Liang Yan ◽  
Shan Zhihua

Abstract The recycling of leather solid waste not only involves resource utilization and environmental protection but also has important significance for the sustainable development of the leather industry. In this paper, the leather waste was crushed into fibers, which were stabilized and mixed with nitrile-butadiene rubber (NBR). The mixture was milled and vulcanized and a composite NBR-SLF (Stabilized Leather Fiber) is prepared for sealing material. The physical and mechanical properties, water resistance, oil resistance and aging resistance of NBR-SLF were tested and analyzed. It is found that the optimized NBR-SLF not only reduces the cost of raw material, but also changes the physical and mechanical performance of NBR. As a sealing material, it satisfies the substitution of NBR in terms of hardness and thermal stability. Especially the anti-aging ability is better than NBR. Graphical abstract


2021 ◽  
Vol 5 ◽  
pp. 65-75
Author(s):  
Y. M. Yevtushenko ◽  
◽  
G. P. Goncharuk ◽  
Y. A. Grigoriev ◽  
I. O. Kuchkina ◽  
...  

The article presents the results of research on electrically conductive hard-to-burn composite materials based on polyethylene, graphite and some flame retardants. It is shown that optimal electrical conducting properties and the flammability rating (V0) in accordance with UL 94 test are achieved by modifying the graphite-containing composite material based on low-pressure polyethylene with ammonium polyphosphate and (or) aluminum hydroxide. It is shown that the percolation threshold of a composite material based on high-pressure polyethylene and graphite is observed at significantly higher values of the mass fraction of graphite. It is concluded that the reduction of the percolation threshold of polyethylene when filled with graphite is facilitated by an increase in the degree of crystallinity of the binder and the formation of structured continuous conducting clusters in the composite material is observed at lower values of the mass fraction of the filler. As a result, the thermal conductivity and heat resistance of the composite material are increased due to more efficient delocalization of the supplied heat. A number of electrically conductive hard-to-burn materials were obtained and characterized. These data allow us to directly adjust the values of the specific volume electrical resistance, physical and mechanical properties, heat resistance and, to a certain extent, resistance to flame.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2534
Author(s):  
Sriharish Malebennur Nagaraja ◽  
Sven Henning ◽  
Sybill Ilisch ◽  
Mario Beiner

A comparative study focusing on the visco–elastic properties of two series of carbon black filled composites with natural rubber (NR) and its blends with butadiene rubber (NR-BR) as matrices is reported. Strain sweeps at different temperatures are performed. Filler network-related contributions to reinforcement (ΔG′) are quantified by the classical Kraus equation while a modified Kraus equation is used to quantify different contributions to dissipation (ΔGD″, ΔGF″). Results indicate that the filler network is visco-elastic in nature and that it is causing a major part of the composite dissipation at small and intermediate strain amplitudes. The temperature dependence of filler network-related reinforcement and dissipation contributions is found to depend significantly on the rubber matrix composition. We propose that this is due to differences in the chemical composition of the glassy rubber bridges connecting filler particles since the filler network topology is seemingly not significantly influenced by the rubber matrix for a given filler content. The underlying physical picture explains effects in both dissipation and reinforcement. It predicts that these glassy rubber bridges will soften sequentially at temperatures much higher than the bulk Tg of the corresponding rubber. This is hypothetically due to rubber–filler interactions at interfaces resulting in an increased packing density in the glassy rubber related to the reduction of free volume. From a general perspective, this study provides deeper insights towards the molecular origin of reinforcement and dissipation in rubber composites.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2872
Author(s):  
Seyed Mohamad Reza Paran ◽  
Ghasem Naderi ◽  
Elnaz Movahedifar ◽  
Maryam Jouyandeh ◽  
Krzysztof Formela ◽  
...  

The effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isothermal vulcanization kinetics were studied at various temperatures by rheometry and differential scanning calorimetry (DSC). The results obtained indicated that the nth order model could not accurately predict the curing performance. However, the autocatalytic approach can be used to estimate the vulcanization reaction mechanism of XNBR/epoxy/XHNTs nanocomposites. The kinetic parameters related to the degradation of XNBR/epoxy/XHNTs nanocomposites were also assessed using thermogravimetric analysis (TGA). TGA measurements suggested that the grafted nanotubes strongly enhanced the thermal stability of the nanocomposite.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 616
Author(s):  
Ján Kruželák ◽  
Andrea Kvasničáková ◽  
Klaudia Hložeková ◽  
Rastislav Dosoudil ◽  
Marek Gořalík ◽  
...  

In the present work, composite materials were prepared by incorporation of manganese-zinc ferrite, carbon black and combination of ferrite and carbon black into acrylonitrile-butadiene rubber (NBR). For cross-linking of composites, standard sulfur-based curing system was applied. The main goal was to investigate the influence of the fillers on the physical-mechanical properties of composites. Then, the electromagnetic absorption shielding ability was investigated in the frequency range 1 MHz–3 GHz. The results revealed that composites filled with ferrite provide sufficient absorption shielding performance in the tested frequency range. On the other hand, ferrite behaves as an inactive filler and deteriorates the physical-mechanical characteristics of composites. Carbon black reinforces the rubber matrix and contributes to the improvement of physical-mechanical properties. However, composites filled with carbon black are not able to absorb electromagnetic radiation in the given frequency range. Finally, the combination of carbon black and ferrite resulted in the modification of both physical-mechanical characteristics and absorption shielding ability of hybrid composites.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2284
Author(s):  
Miaomiao Qian ◽  
Bo Zou ◽  
Zhixiao Chen ◽  
Weimin Huang ◽  
Xiaofeng Wang ◽  
...  

Two factors, the crosslinking degree of the matrix (ν) and the size of the filler (Sz), have significant impact on the Mullins effect of filled elastomers. Herein, the result. of the two factors on Mullins effect is systematically investigated by adjusting the crosslinking degree of the matrix via adding maleic anhydride into a rubber matrix and controlling the particle size of the filler via ball milling. The dissipation ratios (the ratio of energy dissipation to input strain energy) of different filled natural rubber/butadiene rubber (NR/BR) elastomer composites are evaluated as a function of the maximum strain in cyclic loading (εm). The dissipation ratios show a linear relationship with the increase of εm within the test range, and they depend on the composite composition (ν and Sz). With the increase of ν, the dissipation ratios decrease with similar slope, and this is compared with the dissipation ratios increase which more steeply with the increase in Sz. This is further confirmed through a simulation that composites with larger particle size show a higher strain energy density when the strain level increases from 25% to 35%. The characteristic dependence of the dissipation ratios on ν and Sz is expected to reflect the Mullins effect with mathematical expression to improve engineering performance or prevent failure of rubber products.


Sign in / Sign up

Export Citation Format

Share Document