The development and application of the spacer layer imaging method for measuring lubricant film thickness

Author(s):  
H. A. Spikes ◽  
P. M. Cann

This paper reviews the historical development of optical interferometry as applied to the study of lubricant films. The technique was first applied to lubricated contacts in the 1960s, when it played an important role in the validation of the elastohydrodynamic theory of lubrication. Initially the method was not suited to the study of mixed and boundary lubrication because it could not measure film thicknesses of less than about 50 nm. In the 1970s, however, this limitation was partially overcome by the use of a spacer layer and this, coupled in the early 1990s with spectrometric analysis of the interfered light, enabled films down to just 1 nm thick to be measured in lubricated contacts, well within the boundary lubrication regime. Recently a number of workers have applied colorimetric image analysis to optical interference images to enable accurate three-dimensional maps of film distribution in lubricated contacts to be determined. This approach, coupled with the use of a spacer layer, has led to the spacer layer imaging method, which can map film thickness in boundary and mixed lubricated contact. Some recent applications of this technique are described.

2003 ◽  
Vol 125 (3) ◽  
pp. 533-542 ◽  
Author(s):  
Jian W. Choo ◽  
Romeo P. Glovnea ◽  
Andrew V. Olver ◽  
Hugh A. Spikes

The Spacer Layer Imaging method has been used to investigate the influence of three-dimensional roughness features on the thickness and shape of elastohydrodynamic (EHL) films. An array of near-hemispherical bumps was employed to represent asperities. A micro-EHL film developed at the bumps whose orientation depended on that of the inlet boundary at the location at which the bump had entered the contact. Rolling-sliding conditions induced a micro-EHL film with a classical horseshoe shape at the bumps. The flow of lubricant around the bumps appeared to differ between thin and thick films.


2005 ◽  
Vol 127 (4) ◽  
pp. 890-892 ◽  
Author(s):  
I. Křupka ◽  
M. Hartl ◽  
M. Liška

Recent numerical results have indicated that the relationship between the film thickness and the speed may not always follow the simple power law, especially under severe conditions. This paper is aimed at obtaining experimental results at high contact stresses and low speeds to study the thin film behavior. Ultrathin lubricant films were observed at maximum Hertz pressures of 0.52, 1.01, and 1.54 GPa by using an optical test rig. Central and minimum film thickness values were obtained with thin film colorimetric interferometry from chromatic interferograms. The nonlinear behavior of both central and minimum film thicknesses in log-log coordinates was observed as rolling speed and thereby film thickness decreased. This tendency became more obvious at higher contact pressures.


Author(s):  
Nora Rat ◽  
Iolanda Muntean ◽  
Diana Opincariu ◽  
Liliana Gozar ◽  
Rodica Togănel ◽  
...  

Development of interventional methods has revolutionized the treatment of structural cardiac diseases. Given the complexity of structural interventions and the anatomical variability of various structural defects, novel imaging techniques have been implemented in the current clinical practice for guiding the interventional procedure and for selection of the device to be used. Three– dimensional echocardiography is the most used imaging method that has improved the threedimensional assessment of cardiac structures, and it has considerably reduced the cost of complications derived from malalignment of interventional devices. Assessment of cardiac structures with the use of angiography holds the advantage of providing images in real time, but it does not allow an anatomical description. Transesophageal Echocardiography (TEE) and intracardiac ultrasonography play major roles in guiding Atrial Septal Defect (ASD) or Patent Foramen Ovale (PFO) closure and device follow-up, while TEE is the procedure of choice to assess the flow in the Left Atrial Appendage (LAA) and the embolic risk associated with a decreased flow. On the other hand, contrast CT and MRI have high specificity for providing a detailed description of structure, but cannot assess the flow through the shunt or the valvular mobility. This review aims to present the role of modern imaging techniques in pre-procedural assessment and intraprocedural guiding of structural percutaneous interventions performed to close an ASD, a PFO, an LAA or a patent ductus arteriosus.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Junfeng Sun ◽  
Meihong Liu ◽  
Zhen Xu ◽  
Taohong Liao ◽  
Xiangping Hu ◽  
...  

A new type of cylindrical gas film seal (CGFS) with a flexible support is proposed according to the working characteristics of the fluid dynamic seal in high-rotational-speed fluid machinery, such as aero-engines and centrifuges. Compared with the CGFS without a flexible support, the CGFS with flexible support presents stronger radial floating characteristics since it absorbs vibration and reduces thermal deformation of the rotor system. Combined with the structural characteristics of a film seal, an analytical model of CGFS with a flexible wave foil is established. Based on the fluid-structure coupling analysis method, the three-dimensional flow field of a straight-groove CGFS model is simulated to study the effects of operating and structural parameters on the steady-state characteristics and the effects of gas film thickness, eccentricity, and the number of wave foils on the equivalent stress of the flexible support. Simulation results show that the film stiffness increases significantly when the depth of groove increases. When the gas film thickness increases, the average equivalent stress of the flexible support first decreases and then stabilizes. Furthermore, the number of wave foils affects the average foils thickness. Therefore, when selecting the number of wave foils, the support stiffness and buffer capacity should be considered simultaneously.


2011 ◽  
Vol 301-303 ◽  
pp. 1316-1321 ◽  
Author(s):  
Arthur E. Ruggles ◽  
Bi Yao Zhang ◽  
Spero M. Peters

Positron Emission Tomography (PET) produces a three dimensional spatial distribution of positron-electron annihilations within an image volume. Various positron emitters are available for use in aqueous, organic and liquid metal flows. Preliminary experiments at the University of Tennessee at Knoxville (UTK) injected small flows of PET tracer into a bulk water flow in a four rod bundle. The trajectory and diffusion of the tracer in the bulk flow were then mapped using a PET scanner. A spatial resolution of 1.4 mm is achieved with current preclinical Micro-PET imaging equipment resulting in 200 MB 3D activity fields. A time resolved 3-D spatial activity profile was also measured. The PET imaging method is especially well suited to complex geometries where traditional optical methods such as LDV and PIV are difficult to apply. PET methods are uniquely useful for imaging in opaque fluids, opaque pressure boundaries, and multiphase studies. Several commercial and shareware Computational Fluid Dynamics (CFD) codes are currently used for science and engineering analysis and design. These codes produce detailed three dimensional flow predictions. The models produced by these codes are often difficult to validate. The development of this experimental technique offers a modality for the comparison of CFD outcomes with experimental data. Developed data sets from PET can be used in verification and validation exercises of simulation outcomes.


2011 ◽  
Vol 19 (03) ◽  
pp. 177-183 ◽  
Author(s):  
JIN-BO CHEN ◽  
QING-GANG QIU

The technique of horizontal-tube falling film has been used in the cooling and heating industries such as refrigeration systems, heating systems and ocean thermal energy conversion systems. The comprehensive performance of evaporator is directly affected by the film distribution characteristics outside tubes. In this paper, numerical investigation was performed to predict the film characteristics outside the tubes in horizontal-tube falling film evaporator. The effects of liquid flow rate, tube diameter and the circular degree of tube on the film thickness were presented. The numerical simulation results were compared with that of the empirical equations for calculating the falling film thickness, and agreements between them were reasonable. Numerical simulation results show that, at the fixed fluid flow density, the liquid film is thicker on the upper and lower tube and the thinnest liquid film appears at angle of about 120°. The results also indicate that, when the fluid flow density decreases to a certain value, the local dryout spot on the surface of the tube would occur. In addition, the film thickness decreases with the increases of the tube diameter at the fixed fluid flow density.


Author(s):  
H van Leeuwen

The pressure—viscosity coefficient is an indispensable property in the elastohydrodynamic (EHD) lubrication of hard contacts, but often not known. A guess will easily lead to enormous errors in the film thickness. This article describes a method to deduct this coefficient by adapting the value of the pressure—viscosity coefficient until the differences between accurate film thickness approxi-mation values and accurate film thickness measurements over a wide range of values are at a minimum. Eleven film thickness approximation formulas are compared in describing the film thickness of a test fluid with known value of the pressure—viscosity coefficient. The measurement method is based on spacer layer interferometry. It is concluded that for circular contacts the newer more versatile expressions are not better than some older approximations, which are limited to a smaller region of conditions, and that the older fits are as least as appropriate to find the pressure—viscosity coefficient of fluids, in spite of the limited data where they have been based on.


1994 ◽  
Vol 116 (3) ◽  
pp. 612-620 ◽  
Author(s):  
Victoria Wikstro¨m ◽  
Erik Ho¨glund

When calculating film thickness and friction in elastohydrodynamically lubricated contacts, assuming a non-Newtonian fluid, the lubricant limiting shear stress is an essential parameter. It influences minimum film thickness and determines traction in the contact. The limiting shear stress is pressure dependent according to the Johnson and Tevaarwerk equation: τL=τ0+γp The limiting shear stress-pressure coefficient γ has in a previous screening investigation been shown to depend on several parameters: oil type, oil viscosity at + 40°C, maximum contact pressure and temperature. In the present investigation, the preliminary data is used together with response surface methodology. With these results in mind, further experiments are made and an empirical model is built. This paper presents a new model for γ which is valid for two types of oil (a polyalphaolefine with diester and a naphthenic oil) with different viscosities at +40°C. The model incorporates the influence of maximum contact pressure and oil temperature on γ. The measurements on which the model is based were carried out at temperatures ranging from −20 to + 110°C. The pressure range was 5.8–7 GPa and the shear rate was about 106 s−1.


1990 ◽  
Vol 112 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Dongchu Zhao

A method for measuring the lubricant condition with strain gage in rolling element bearings and the instrument used are introduced. In order to illustrate the method and the instrument, the theory of measuring lubricant films in rolling element bearings using strain technique, test apparatus, microcomputer hardware as well as software, flow charts for the main program and subprograms, are first described in detail. In addition, the lubricant film thickness is measured for several different lubricants and results are compared with theoretical ones. It is demonstrated that using the method and the instrument introduced in this paper, one can measure the lubricant condition inside bearings very accurately.


Sign in / Sign up

Export Citation Format

Share Document