scholarly journals Studies of Substitution Effect of B2O3 on Structure and Properties of 1393 Bioactive Glass

2021 ◽  
Vol 37 (6) ◽  
pp. 1409-1414
Author(s):  
Neeraj Gupta ◽  
Vikash Kumar Vyas ◽  
Apurba Mandal

Bioactive glass is mainly familiar for its outstanding biocompatibility and bioactive behavior and it’s known for important bone bonding ability. Bioactive glass is a reproduction fillet joint meant for orthopedic in addition to periodontal function of one of the leading applications. A silica based bioactive glass designated 1393 bio-glass® [wt. % (53) SiO2 – (6) Na2O – (12) K2O – (20) CaO – (5) MgO – (4)P2O5] 1393 is like 45S5 bio-glass®, other than it has a high SiO2 content and network modifiers, such as potassium oxide and magnesium oxide, bioactive glass, is also used clinically. In this communication, study of destructive (DT) & non-destructive (NDT) behavior of SiO2 replaced by boron trioxide (B2O3) in 1393 bioactive glass has been reported. The formed amorphous phase using x-ray diffraction (X-RD) analysis in bioactive glass will be identified. Density and mechanical properties measured using different types of instrument and using ultrasonic wave velocities study the elastic properties like young’s , shear, bulk modulus and Poisson’s ratio of bioactive glasses were reported. The results point to the substitution of boron trioxide in 1393 bioactive glass enhanced its density, mechanical properties and elastic properties, similarly for silica.

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 691
Author(s):  
O. Sánchez-Aguinagalde ◽  
Ainhoa Lejardi ◽  
Emilio Meaurio ◽  
Rebeca Hernández ◽  
Carmen Mijangos ◽  
...  

Chitosan (CS) and poly (vinyl alcohol) (PVA) hydrogels, a polymeric system that shows a broad potential in biomedical applications, were developed. Despite the advantages they present, their mechanical properties are insufficient to support the loads that appear on the body. Thus, it was proposed to reinforce these gels with inorganic glass particles (BG) in order to improve mechanical properties and bioactivity and to see how this reinforcement affects levofloxacin drug release kinetics. Scanning electron microscopy (SEM), X-ray diffraction (XRD), swelling tests, rheology and drug release studies characterized the resulting hydrogels. The experimental results verified the bioactivity of these gels, showed an improvement of the mechanical properties and proved that the added bioactive glass does affect the release kinetics.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5651
Author(s):  
Rachele Sergi ◽  
Valeria Cannillo ◽  
Aldo R. Boccaccini ◽  
Liliana Liverani

Chitosan fibers blended with polyethylene oxide (CHIT_PEO) and crosslinked with genipin were fabricated by electrospinning technique. Subsequently, CHIT_PEO bioactive glass composite electrospun mats were fabricated with the aim to achieve flexible structures with adequate mechanical properties and improved biological performance respect to CHIT_PEO fibers, for potential applications in wound healing. Three different compositions of bioactive glasses (BG) were selected and investigated: 45S5 BG, a Sr and Mg containing bioactive glass (BGMS10) and a Zn-containing bioactive glass (BGMS_2Zn). Particulate BGs (particles size < 20 μm) were separately added to the starting CHIT_PEO solution before electrospinning. The two recently developed bioactive glasses (BGMS10 and BGMS_2Zn) showed very promising biological properties in terms of bioactivity and cellular viability; thus, such compositions were added for the first time to CHIT_PEO solution to fabricate composite electrospun mats. The incorporation of bioactive glass particles and their distribution into CHIT_PEO fibers were assessed by SEM and FTIR analyses. Furthermore, CHIT_PEO composite electrospun mats showed improved mechanical properties in terms of Young’s Modulus compared to neat CHIT_PEO fibers; on the contrary, the values of tensile strain at break (%) were comparable. Biological performance in terms of cellular viability was investigated by means of WST-8 assay and CHIT_PEO composite electrospun mats showed cytocompatibility and the desired cellular viability.


2008 ◽  
Vol 587-588 ◽  
pp. 62-66 ◽  
Author(s):  
Hermes S. Costa ◽  
Alexandra A.P. Mansur ◽  
Edel Figueiredo Barbosa-Stancioli ◽  
Marivalda Pereira ◽  
Herman S. Mansur

Bioactive glasses are materials that have been used for the repair and reconstruction of diseased bone tissues, as they exhibit direct bonding with human bone tissues. However, bioactive glasses have low mechanical properties compared to cortical and cancellous bone. On the other hand, composite materials of biodegradable polymers with inorganic bioactive glasses are of particular interest to engineered scaffolds because they often show an excellent balance between strength and toughness and usually improved characteristics compared to their individual components. Composite bioactive glass-polyvinyl alcohol foams for use as scaffolds in tissue engineering were previously developed using the sol-gel route. The goal of this work was the synthesis of composite foams modified with higher amounts of PVA. Samples were characterized by morphological and chemical analysis. The mechanical behavior of the obtained materials was also investigated. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioactive glass composition ratios affect the synthesis procedure. Foams with up to 80 wt% polymer content were obtained. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm and improved mechanical properties.


2019 ◽  
Vol 10 (3) ◽  
pp. 38 ◽  
Author(s):  
Hamasa Faqhiri ◽  
Markus Hannula ◽  
Minna Kellomäki ◽  
Maria Teresa Calejo ◽  
Jonathan Massera

This study reports on the processing of three-dimensional (3D) chitosan/bioactive glass composite scaffolds. On the one hand, chitosan, as a natural polymer, has suitable properties for tissue engineering applications but lacks bioactivity. On the other hand, bioactive glasses are known to be bioactive and to promote a higher level of bone formation than any other biomaterial type. However, bioactive glasses are hard, brittle, and cannot be shaped easily. Therefore, in the past years, researchers have focused on the processing of new composites. Difficulties in reaching composite materials made of polymer (synthetic or natural) and bioactive glass include: (i) The high glass density, often resulting in glass segregation, and (ii) the fast bioactive glass reaction when exposed to moisture, leading to changes in the glass reactivity and/or change in the polymeric matrix. Samples were prepared with 5, 15, and 30 wt% of bioactive glass S53P4 (BonAlive ®), as confirmed using thermogravimetric analysis. MicrO–Computed tomography and optical microscopy revealed a flaky structure with porosity over 80%. The pore size decreased when increasing the glass content up to 15 wt%, but increased back when the glass content was 30 wt%. Similarly, the mechanical properties (in compression) of the scaffolds increased for glass content up to 15%, but decreased at higher loading. Ions released from the scaffolds were found to lead to precipitation of a calcium phosphate reactive layer at the scaffold surface. This is a first indication of the potential bioactivity of these materials. Overall, chitosan/bioactive glass composite scaffolds were successfully produced with pore size, machinability, and ability to promote a calcium phosphate layer, showing promise for bone tissue engineering and the mechanical properties can justify their use in non-load bearing applications.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 615
Author(s):  
Basam A. E. Ben-Arfa ◽  
Robert C. Pullar

Bioactive glass scaffolds are used in bone and tissue biomedical implants, and there is great interest in their fabrication by additive manufacturing/3D printing techniques, such as robocasting. Scaffolds need to be macroporous with voids ≥100 m to allow cell growth and vascularization, biocompatible and bioactive, with mechanical properties matching the host tissue (cancellous bone for bone implants), and able to dissolve/resorb over time. Most bioactive glasses are based on silica to form the glass network, with calcium and phosphorous content for new bone growth, and a glass modifier such as sodium, the best known being 45S5 Bioglass®. 45S5 scaffolds were first robocast in 2013 from melt-quenched glass powder. Sol–gel-synthesized bioactive glasses have potential advantages over melt-produced glasses (e.g., greater porosity and bioactivity), but until recently were never robocast as scaffolds, due to inherent problems, until 2019 when high-silica-content sol–gel bioactive glasses (HSSGG) were robocast for the first time. In this review, we look at the sintering, porosity, bioactivity, biocompatibility, and mechanical properties of robocast sol–gel bioactive glass scaffolds and compare them to the reported results for robocast melt-quench-synthesized 45S5 Bioglass® scaffolds. The discussion includes formulation of the printing paste/ink and the effects of variations in scaffold morphology and inorganic additives/dopants.


2008 ◽  
Vol 14 (S3) ◽  
pp. 65-66
Author(s):  
N.B. Barroca ◽  
A.L. Daniel-da-Silva ◽  
M.H.V. Fernandes ◽  
P.M. Vilarinho

Recently, porous polymer-ceramic composites have been developed and represent promising scaffolds to be used as synthetic extracellular matrix in bone tissue engineering since they combine the advantages of these two types of materials. On the other hand bioactive glasses (BG) have been used as ceramic fillers to promote bioactivity and to enhance mechanical properties and osteoblast functions. Among all the requirements, these 3D porous structures should have a controllable average pore size larger than 100 μm as well as good pore interconnectivity to allow vascularization and tissue ingrowth. The goal of this study is to investigate the effect of the addition of a bioactive glass on the porous structure development of the scaffolds prepared by thermally induced phase-separation and also to test the bioactivity of these composite scaffolds. Poly (L-lactic) acid (PLLA) was chosen as the polymer matrix because of its well-known biocompatibility and adjustable physical and mechanical properties. Micron-sized (<10 μm) glass from the 3CaO.P2O5-MgO-SiO2 system was produced in our laboratory and used as the bioactive ceramic filler.


2014 ◽  
Vol 631 ◽  
pp. 25-29
Author(s):  
S.S. Seyedmomeni ◽  
M. Naeimi ◽  
Majid Raz ◽  
J. Aghazadeh Mohandesi ◽  
F. Moztarzadeh

Various kinds of bioactive materials are developed as bone substitutes. Bioactive materials may affect attachment, proliferation and differentiation of cells and the subsequent integration in a host tissue. In this research 21%CaO–5%P2O5–64%SiO2–5%ZnO-5%B2O3and 16%CaO–5%P2O5–64%SiO2–5%ZnO-10%B2O3bioactive glasses were successfully synthesized by the sol–gel technique. Then the prepared bioactive glasses were soaked into simulated body fluid. Then the prepared samples were characterized using X-ray diffraction (XRD) and Scanning electron microscopy (SEM). It was seen that addition of boron to the structure remarkably enhances the formation of hydroxyapatite on the surface of the bioactive glass and subsequently improves the bioactivity. The obtained results from SEM and XRD were in good agreement with each other. Besides, effect of boron on atomic arrangement of the prepared bioactive glass was studies and compared with previous researches. It was shown that by increasing the boron content, more crystalline domains would be observed.


2014 ◽  
Vol 62 (1) ◽  
pp. 24-30
Author(s):  
Edit Beáta VILPPONEN ◽  
Szabolcs KOMÁN ◽  
László BEJÓ

<p class="p1"><span class="s1">A hazai nemesnyár anyagok értéknövelt hasznosításának a</span>z egyik lehetősége az LVL termék<span class="s1"> készítése. A nyár LVL mechanikai tulajdonságai </span>némileg elmaradnak a jelenleg kapható fenyő LVL paramétereitől. A tulajdonságok javíthatók keménylombos erősítő rétegek alkalmazásával.</p><p class="p2">Az ismertetett kutatás során óriás- és olasznyár fafajtákból készült LVL mechanikai tulajdonságait módosítottuk bükk, csertölgy, illetve bálványf<span class="s2">a erősítő furnérrétegekke</span>l. Az elkészült LVL termékek mechanikai tulajdonságait roncsolásmentes módszerekkel és statikus vizsgálatokkal határoztuk meg. A lemezek rugalmassági modulusát modellezéssel is becsültük, a furnérrétegek elasztikus tulajdonságai és feltételezett tömörödése alapján.<span class="s2"> A cikksorozat első részében a roncsolásmentesen mért és modellezett elasztikus tulajdonságokat mutatjuk be.</span></p><p class="p3">Az erősítő rétegek használatával a rugalmassági modulus értékek szignifikánsan növekedtek. Bükk esetében a javulás a várakozásnak megfelelő volt, míg csertölgy, és különösen bálványfa esetén jóval meghaladták azt, ami mutatja, hogy e furnérok erősítő rétegként történő alkalmazásában jelentős lehetőségek rejlenek. Az alkalmazott modell jól becsülte a nyár kontroll lemezek és a bükk furnérral erősített lemezek rugalmassági modulusát, azonban konzervatív becslést adott a csertölgy és bálványfa rétegek hatása tekintetében.</p>


2020 ◽  
Vol 1010 ◽  
pp. 620-625
Author(s):  
Ahmad Kamil Fakhruddin ◽  
Hasmaliza M. Mohamad

Bioactive glass use silica (SiO2), calcium carbonate (CaCO3), sodium carbonate (Na2CO3), phosphorus pentoxide (P2O5) as raw materials. In this work, bioactive glass (BG); 45S5 bioactive glass was synthesized using natural resources materials; rice husk ash (RHA) as silica (SiO2) source and seashell (SS) as calcium carbonate (CaCO3) source through melt derived method. All raw materials were melted at 1400 °C and water quenched. The glass frit obtained was milled and sieved then analyzed using X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR) and Scanning Electron Microscope (SEM). The mechanical properties 45S5 BG pellet was observed through diametral tensile stress (DTS). The XRD and FTIR pattern for all sample synthesized using natural resources raw materials show similar pattern with control sample 45S5 synthesis using pure raw materials. The mechanical properties for all samples also have not significantly different with control samples


Sign in / Sign up

Export Citation Format

Share Document