scholarly journals MicroRNA-5195-3p alleviates high glucose‑induced injury in human ARPE-19 cells by targeting GMFB

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260071
Author(s):  
Jingjing Liu ◽  
Yongsheng Hou ◽  
Lili Lin ◽  
Nannan Yu ◽  
Yanyan Zhang

Hyperglycemia is generally considered to be an important cause of diabetic retinopathy (DR). The aim of the present study was to investigate the role of miR-5195-3p in high glucose (HG)-induced human retinal pigment epithelial ARPE-19 cell injury. Here, we first found that the expression level of miR-5195-3p was significantly downregulated in HG-stimulated ARPE-19 cells using reverse transcription quantitative PCR. Overexpression of miR-5195-3p attenuated the impaired cell viability, increased apoptosis and pro-inflammatory cytokines secretion in ARPE-19 cells under HG condition using CCK-8 assay, flow cytometry and ELISA assay, respectively. Luciferase reporter assay showed that miR-5195-3p could specifically bind to the 3’UTR of glia maturation factor-β (GMFB). GMFB overexpression reversed, while knockdown enhanced the protective effects of miR-5195-3p overexpression against HG-induced ARPE-19 cell injury. In summary, miR-5195-3p targeting GMFB might be a potential therapeutic target for DR.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Yun ◽  
Jinyu Ren ◽  
Yufei Liu ◽  
Lijuan Dai ◽  
Liqun Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. Methods RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. Results Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. Conclusion All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.


Author(s):  
Haitao Song ◽  
Yanwei Rao ◽  
Gang Zhang ◽  
Xiangbo Kong

MicroRNAs (miRNAs) are emerging as pivotal regulators in the development and progression of various cancers, including renal cell carcinoma (RCC). MicroRNA-384 (miR-384) has been found to be an important cancer-related miRNA in several types of cancers. However, the role of miR-384 in RCC remains unclear. In this study, we aimed to investigate the potential function of miR-384 in regulating tumorigenesis in RCC. Here we found that miR-384 was significantly downregulated in RCC tissues and cell lines. Overexpression of miR-384 significantly inhibited the growth and invasion of RCC cells, whereas inhibition of miR-384 had the opposite effects. Bioinformatic analysis and luciferase reporter assay showed that miR-384 directly targeted the 3′-untranslated region of astrocyte elevated gene 1 (AEG-1). Further data showed that miR-384 could negatively regulate the expression of AEG-1 in RCC cells. Importantly, miR-384 expression was inversely correlated with AEG-1 expression in clinical RCC specimens. Moreover, miR-384 regulates the activation of Wnt signaling. Overexpression of AEG-1 significantly reversed the antitumor effects of miR-384. Overall, these findings suggest that miR-384 suppresses the growth and invasion of RCC cells via downregulation of AEG-1, providing a potential therapeutic target for the treatment of RCC.


2020 ◽  
Vol 21 (11) ◽  
pp. 3830 ◽  
Author(s):  
Yan Levitsky ◽  
Sandra S. Hammer ◽  
Kiera P. Fisher ◽  
Chao Huang ◽  
Travan L. Gentles ◽  
...  

Mitochondrial damage in the cells comprising inner (retinal endothelial cells) and outer (retinal pigment epithelium (RPE)) blood–retinal barriers (BRB) is known to precede the initial BRB breakdown and further histopathological abnormalities in diabetic retinopathy (DR). We previously demonstrated that activation of acid sphingomyelinase (ASM) is an important early event in the pathogenesis of DR, and recent studies have demonstrated that there is an intricate connection between ceramide and mitochondrial function. This study aimed to determine the role of ASM-dependent mitochondrial ceramide accumulation in diabetes-induced RPE cell damage. Mitochondria isolated from streptozotocin (STZ)-induced diabetic rat retinas (7 weeks duration) showed a 1.64 ± 0.29-fold increase in the ceramide-to-sphingomyelin ratio compared to controls. Conversely, the ceramide-to-sphingomyelin ratio was decreased in the mitochondria isolated from ASM-knockout mouse retinas compared to wild-type littermates, confirming the role of ASM in mitochondrial ceramide production. Cellular ceramide was elevated 2.67 ± 1.07-fold in RPE cells derived from diabetic donors compared to control donors, and these changes correlated with increased gene expression of IL-1β, IL-6, and ASM. Treatment of RPE cells derived from control donors with high glucose resulted in elevated ASM, vascular endothelial growth factor (VEGF), and intercellular adhesion molecule 1 (ICAM-1) mRNA. RPE from diabetic donors showed fragmented mitochondria and a 2.68 ± 0.66-fold decreased respiratory control ratio (RCR). Treatment of immortalized cell in vision research (ARPE-19) cells with high glucose resulted in a 25% ± 1.6% decrease in citrate synthase activity at 72 h. Inhibition of ASM with desipramine (15 μM, 1 h daily) abolished the decreases in metabolic functional parameters. Our results are consistent with diabetes-induced increase in mitochondrial ceramide through an ASM-dependent pathway leading to impaired mitochondrial function in the RPE cells of the retina.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jianlei Zhang ◽  
Wei Liu ◽  
Yabo Wang ◽  
Shengnan Zhao ◽  
Na Chang

miR-135a-5p was reported to play a crucial role in the protective effects of hydrogen sulfide against Parkinson’s disease (PD) by targeting rho-associated protein kinase 2 (ROCK2). However, the role of another member of miR-135 family (miR-135b) and the underlying mechanism in PD are still unclear. qRT-PCR and western blot showed that miR-135 was downregulated and glycogen synthase kinase 3β (GSK3β) was upregulated at mRNA and protein levels in MPP+-intoxicated SH-SY5Y cells in a dose- and time-dependent manner. MTT, TUNEL, and ELISA assays revealed that miR-135b overexpression significantly promoted cell proliferation and inhibited apoptosis and production of TNF-α and IL-1β in SH-SY5Y cells in the presence of MPP+. Luciferase reporter assay demonstrated that GSK3β was a direct target of miR-135b. Moreover, sodium nitroprusside (SNP), a GSK3β activator, dramatically reversed the effects of miR-135b upregulation on cell proliferation, apoptosis, and inflammatory cytokine production in MPP+-intoxicated SH-SY5Y cells. Taken together, miR-135b exerts a protective role via promotion of proliferation and suppression of apoptosis and neuroinflammation by targeting GSK3β in MPP+-intoxicated SH-SY5Y cells, providing a potential therapeutic target for the treatment of PD.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhao Guo ◽  
Wen-Shan Gao ◽  
Yun-Fei Wang ◽  
Fei Gao ◽  
Wei Wang ◽  
...  

Intervertebral disc degeneration (IVDD) is a common cause of low back pain. This study is aimed at investigating the role of microRNAs (miRNAs) in regulating human nucleus pulposus (NP) cell injury induced by tumor necrosis factor- (TNF-) α in IVDD. In this study, we induced NP cells with 20 ng/mL TNF-α in vitro, which promoted the obvious apoptosis of NP cells and the activation of nuclear transcription factor (NF)-κB. In contrast, using the specific NF-κB inhibitor BAY 11-7082 to treat cells greatly impaired the activation of NF-κB and increased the sensitivity of NP cells to TNF-α-induced apoptosis. Moreover, both TNF-α and BAY 11-7082 treatments were associated with marked miRNA dysregulation, with miR-502 being upregulated by TNF-α treatment and downregulated by BAY 11-7082 treatment, respectively. And the overexpression of miR-502 enhanced NF-κB activation and suppressed apoptosis of human NP cells induced by TNF-α, whereas the opposite was observed following miR-502 inhibition. Last, through bioinformatic analyses and luciferase reporter gene experiments, we identified TRAF2, an important activator of NF-κB, as a miR-502 target gene. Similarly, siRNA-mediated knockdown of the TRAF2 expression also suppressed TNF-α-induced apoptosis and enhanced NF-κB activation. Our findings provide evidence indicating that miR-502 is a key regulator of apoptosis of human NP cells induced by TNF-α by targeting TRAF2 and activating NF-κB.


2020 ◽  
Author(s):  
Jin Xu ◽  
Xiaozhong Qian ◽  
Ren Ding

Abstract Background: Osteoarthritis (OA) is a chronic and degenerative joint disease prevalent in the elderly. MiR-24-3p has been reported to be involved in an OA-resembling environment. However, the functional role and underlying mechanism of miR-24-3p in chondrocyte injury associated with OA remains unknown. Methods: The expression of miR-24-3p was determined in OA cases and control patients, as well as IL-1β-stimulated chondrocyte cell line CHON-001 using reverse transcription quantitative PCR analysis. Cell viability was analyzed by CCK-8 assay. Apoptosis status was assessed by caspase-3 activity detection. The pro-inflammatory cytokines (TNF-α and IL-18) were determined using ELISA assay. The association between miR-24-3p and BCL2L12 was confirmed by luciferase reporter assay.Results: We first observed that miR-24-3p expression level was lower in the OA cases than in the control patients and IL-1β decreased the expression of miR-24-3p in the chondrocyte CHON-001. Functionally, overexpression of miR-24-3p significantly attenuated IL-1β-induced chondrocyte injury, as reflected by increased cell viability, decreased caspase-3 activity, pro-inflammatory cytokines (TNF-α and IL-18). Western blot analysis showed that overexpression of miR-24-3p weakened IL-1β-induced cartilage degradation, as reflected by reduction of MMP13 (Matrix Metalloproteinase-13) and ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin Motifs-5) protein expression, as well as markedly elevation of COL2A1 (collagen type II). Importantly, BCL2L12 was demonstrated to be a target of miR-24-3p. BCL2L12 knockdown imitated, while overexpression significantly abrogated the protective effects of miR-24-3p against IL-1β-induced chondrocyte injury.Conclusions: In conclusion, our work provides important insight into targeting miR-24-3p/BCL2L12 axis in OA therapy.


2019 ◽  
Vol 39 (11) ◽  
Author(s):  
Xiran Lin ◽  
Xianmin Meng ◽  
Zhiqi Song

Abstract Psoriasis is caused by a complex interplay among the immune system, genetic background, autoantigens, and environmental factors. Recent studies have demonstrated that patients with psoriasis have a significantly higher serum homocysteine (Hcy) level and a higher prevalence of hyperhomocysteinaemia (HHcy). Insufficiency of folic acid and vitamin B12 can be a cause of HHcy in psoriasis. Hcy may promote the immuno-inflammatory process in the pathogenesis of psoriasis by activating Th1 and Th17 cells and neutrophils, while suppressing regulatory T cells. Moreover, Hcy can drive the immuno-inflammatory process by enhancing the production of the pro-inflammatory cytokines in related to psoriasis. Hcy can induce nuclear factor kappa B activation, which is critical in the immunopathogenesis of psoriasis. There may be a link between the oxidative stress state in psoriasis and the effect of HHcy. Hydrogen sulfide (H2S) may play a protective role in the pathogenesis of psoriasis and the deficiency of H2S in psoriasis may be caused by HHcy. As the role of Hcy in the pathogenesis of psoriasis is most likely established, Hcy can be a potential therapeutic target for the treatment of psoriasis. Systemic folinate calcium, a folic acid derivative, and topical vitamin B12 have found to be effective in treating psoriasis.


2021 ◽  
Vol 27 ◽  
Author(s):  
Jingbo Zhou ◽  
Shu Zhang ◽  
Xinyi Sun ◽  
Yan Lou ◽  
Jiangyi Yu

Hyperoside, a flavonol glycoside, is derived from plants of the genera Hypericum and Crataegus. Recent studies have indicated the anti-apoptotic and anti-inflammatory roles of hyperoside. The present study was designed to measure the effects of hyperoside on high glucose (HG)-treated HK-2 cells. HK-2 is a human papillomavirus 16 transformed cell line and can be used as a model for normal tubular cell. Cell apoptosis was examined by TUNEL assays and flow cytometry analysis. Inflammatory response was detected by Enzyme linked immunosorbent assay kits. Western blotting was applied to detect protein levels of apoptosis-related genes and inflammatory cytokines. Mechanistical assays including luciferase reporter and RNA pull down assays were applied to detect the binding relationship between molecules. We identified that hyperoside protected HK-2 cells against HG-induced apoptosis and inflammation. Moreover, miR-499a-5p was upregulated by hyperoside in a dose dependent manner. MiR-499a-5p inhibition rescued the suppressive effects of hyperoside on apoptosis and inflammation of HG-treated HK-2 cells. Furthermore, miR-499a-5p targeted NRIP1 to inhibit its mRNA expression, and further suppressed its translation. NRIP1 was downregulated by hyperoside in a dose dependent manner. Finally, rescue assays indicated that miR-499a-5p inhibition rescued the protective effects of hyperoside on apoptosis and inflammatory response of HK-2 cells by NRIP1. In conclusion, our findings revealed that hyperoside alleviates HG-induced apoptosis and inflammatory response of HK-2 cells by the miR-499a-5p/NRIP1 axis.


2021 ◽  
Author(s):  
Jinxi Huang ◽  
Weiwei Yuan ◽  
Beibei Chen ◽  
Gaofeng Li ◽  
Xiaobing Chen

Abstract BackgroundExtracellular leucine rich repeat and fibronectin type III domain containing 1-antisense RNA 1 (ELFN1-AS1) was upregulated in tumors. Nevertheless, the biological functions of ELFN1-AS1 in gastric cancer are not fully understood.MethodsThe ELFN1-AS1, miR-211-3p and TRIM29 expression levels were determined by reverse transcription-quantitative PCR. CCK8, EDU and colony formation assays were done to test the GC cell vitality. The migratory and invasive capabilities of GC cells were further measured by transwell invasion and cell scratch assays. The ceRNA activity of ELFN1-AS1 for TRIM29 via miR-211-3pp was ascertained through pull down, RIP and luciferase reporter assays.ResultsELFN1-AS1 and TRIM29 were robustly expressed in gastric cancer tissues and negatively associated overall survival time of patients. The ELFN1-AS1 silence blocked the proliferation, migration and invasion of GC cells. The oncogenic role of ELFN1-AS1 was recognized to be modulated by miR-211-3pp, which competitively bind to 3'UTR TRIM29 and resulted in the reduced expression of TRIM29.ConclusionELFN1-AS1 maintained the tumorigensis of GC cells by ELFN1-AS1/miR-211-3pp/TRIM29 axis, suggesting that intervention targeting this axis may be warranted for GC treatment.


2021 ◽  
Author(s):  
Tianchi Chen ◽  
Xiangtao Zheng ◽  
Yangyan He ◽  
Chenyang Qiu ◽  
Xiaohui Wang ◽  
...  

Abstract Background Circular RNAs have been demonstrated to play an important role in the development of vascular diseases. However, little is known about the role of circ-021774, also named circ-DAPK1, in vascular cell pyroptosis. Methods Circ-DAPK1 was selected from circular RNA sequencing data of HUVECs treated with high glucose medium and normal medium. RT-qPCR was used to determine the expression of circ-DAPK1 in vivo and in vitro. Dual luciferase reporter assay, fluorescence in situ hybridization (FISH) and RNA immunoprecipitation (RIP) were performed to prove the interaction of circ-DAPK1, miRNA-4454 and thioredoxin-interactingprotein (TXNIP). Adeno-associated virus (AAV) was injected intravenously to establish mouse models. PI staining, western-blot and transmission electron microscopy (TEM) analyses were performed to identify the role of circ-DAPK1 in promoting pyroptosis. Results We found that circ-DAPK1 was highly expressed in high glucose medium cultured HUVECs and db/db mice. In vitro and in vivo experiments demonstrated that circ-DAPK1 knockdown decreased the number of PI+ cells, the expression of ASC, NLRP3, GSDMD-N, cleaved caspase-1, IL-18 and IL-1β. In a mechanistic study, the circ-DAPK1/miRNA-4454/TXNIP signaling axis was demonstrated to promote vascular cell pyroptosis in diabetes. Conclusions Circ-DAPK1 functions as a promoter of vascular cell pyroptosis in diabetes via the circ-DAPK1/miRNA-4454/TXNIP signaling axis.


Sign in / Sign up

Export Citation Format

Share Document