Effect of Used Coffee Grounds on Larval Mortality of Aedes aegypti L. (Diptera: Culicidae): Suspension Concentration and Age versus Efficacy

BioAssay ◽  
2009 ◽  
Vol 2 (0) ◽  
Author(s):  
Marluci Monteiro Guirado ◽  
Hermione Elly Melara de Campos Bicudo
2020 ◽  
Vol 26 (33) ◽  
pp. 4092-4111
Author(s):  
Mikael A. de Souza ◽  
Larissa da Silva ◽  
Maria A. C. dos Santos ◽  
Márcia J. F. Macêdo ◽  
Luiz J. Lacerda-Neto ◽  
...  

The Aedes aegypti is responsible for the transmission of arboviruses, which compromise public health. In the search for synthetic product alternatives, essential oils (OEs) have been highlighted by many researchers as natural insecticides. This systematic review (SR) was performed according to PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and its objective was to evaluate studies addressing OEs with larvicidal properties against Ae. aegypti, through electronic database searches (Pubmed, Science Direct and Scielo), covering an overview of the plant sources OEs, which plant parts were used, the extraction methods, analytical techniques, major and/or secondary constituents with greater percentages, as well as the LC50s responsible for larval mortality. Following study analysis, plants distributed across 32 families, 90 genera and 175 species were identified. The Lamiaceae, Myrtaceae, Piperaceae, Asteraceae, Rutaceae, Euphorbiaceae and Lauraceae families obtained the highest number of species with toxic properties against larvae from this vector. Practically all plant parts were found to be used for OE extraction. Hydrodistillation and steam distillation were the main extraction methods identified, with GC-MS/GC-FID representing the main analytical techniques used to reveal their chemical composition, especially of terpene compounds. In this context, OEs are promising alternatives for the investigation of natural, ecologically correct and biodegradable insecticides with the potential to be used in Ae. aegypti control programs.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Nor Shaida Husna Zulkrnin ◽  
Nurul Nadiah Rozhan ◽  
Nur Amanina Zulkfili ◽  
Nik Raihan Nik Yusoff ◽  
Mohd Sukhairi Mat Rasat ◽  
...  

Dengue is vector-borne diseases with 390 million infections per year extending over 120 countries of the world. Aedes aegypti (L.) (Diptera: Culicidae) is a primary vector for dengue viral infections for humans. Current focus on application of natural product against mosquito vectors has been the main priority for research due to its eco-safety. The extensive use of chemical insecticides has led to severe health problems, environmental pollution, toxic hazards to human and nontarget species, and development of insecticide resistance on mosquitoes. Azolla pinnata is an aquatic fern and predominantly used as feed in poultry industry and as fertilizer in agricultural field for enhancing the fertility of rice paddy soil. The present study was conducted to explore the larvicidal efficacy of A. pinnata using fresh and powdered form against late third-stage larvae (6 days, 5 mm in larvae body length) of Ae. aegypti (L.) (Diptera: Culicidae). The larvicidal bioassays were performed using World Health Organization standard larval susceptibility test method for different concentration for powdered and fresh A. pinnata. Powdered A. pinnata concentration used during larvicidal bioassay ranges from 500ppm to 2000ppm; meanwhile, fresh A. pinnata ranges from 500ppm to 9,000,000 ppm. The highest mortality was at 1853 ppm for powdered A. pinnata compared with fresh A. pinnata at 2,521,535 ppm, while the LC50 for both powdered and fresh A. pinnata recorded at 1262 ppm and 1853 ppm, respectively. Finally, the analysis of variance (ANOVA) showed significant difference on Ae. aegypti larval mortality (F=30.439, df=1, p≤0.001) and concentration (F=20.002, df=1, p≤0.001) compared to powdered and fresh A. pinnata at 24-hour bioassay test. In conclusion, the powdered A. pinnata serves as a good larvicidal agent against Ae. aegypti (L.) (Diptera: Culicidae) and this study provided information on the lethal concentration that may have potential for a more eco-friendly Aedes mosquito control program.


Hydrobiologia ◽  
2011 ◽  
Vol 665 (1) ◽  
pp. 257-261 ◽  
Author(s):  
Luiz C. S. Lopez ◽  
Emanuella G. B. Silva ◽  
Mayara G. Beltrão ◽  
Renata S. Leandro ◽  
José E. L. Barbosa ◽  
...  

2020 ◽  
Vol 19 (2) ◽  
pp. 112-118
Author(s):  
Muhammad Rasyid Ridha ◽  
Budi Hairani ◽  
Gusti Meliyanie ◽  
Wulan Rasna Giri Sembiring ◽  
Abdullah Fadilly ◽  
...  

ABSTRACT Dengue hemorrhagic fever is a global health problem and can be transmitted through vectors, namely Aedes aegypti. One of the controls can be through lethal ovitrap combined with attractant. This study aims to compare the percentage of trapped eggs, the number of eggs hatched, and larval mortality in the lethal ovitrap that were given two additional types of attractants. The insecticides used were temephos, while the attractants used were 20% straw soaking water, and water that Ae. aegypti have used to lay eggs. The type of research is an experiment with a completely randomized design. The sample used was female mosquito of Ae. aegypti that is full of blood from laboratory colonization. The results showed that straw soaking water was more influential attractant than the former Ae. aegypti colonization water in attracting Ae. aegypti mosquitoes to lay eggs. The highest larval mortality was found in a combination of lethal ovitrap with straw soaking water. Statistically there is an influence of the type of attractant on hatchability and the development of Ae. aegypti into adult mosquitoes. The combination of lethal ovitrap and attractant of straw soaking water can be an alternative control strategy for DHF program managers to reduce the density of Ae. aegypti mosquitoes and minimize transmission of dengue hemorrhagic fever in an area. Keywords: Aedes aegypti, attractant, lethal ovitrap, straw soaking water   ABSTRAK Demam berdarah dengue merupakan masalah kesehatan global dan dapat ditularkan melalui vektor yaitu Aedes aegypti. Salah satu pengendaliannya dapat melalui lethal ovitrap yang dipadukan dengan atraktan. Penelitian ini bertujuan untuk membandingkan persentase jumlah telur terperangkap, jumlah telur menetas, dan mortalitas larva pada lethal ovitrap yang diberi tambahan dua jenis atraktan. Insektisida yang digunakan adalah temefos, sedangkan atraktan yang digunakan adalah air rendaman jerami dengan konsentrasi 20%, dan air bekas kolonisasi/telur larva Ae. aegypti. Jenis penelitian ini adalah eksperimen dengan rancangan acak lengkap. Sampel yang digunakan adalah nyamuk Ae. aegypti betina yang kenyang darah hasil kolonisasi di laboratorium. Hasil penelitian menunjukkan bahwa air rendaman jerami merupakan atraktan yang lebih berpengaruh dibandingkan air bekas kolonisasi Ae. aegypti dalam menarik nyamuk Ae. aegypti untuk bertelur. Mortalitas larva tertinggi terdapat pada kombinasi lethal ovitrap dengan air rendaman jerami. Secara statistik ada pengaruh jenis atraktan terhadap daya tetas dan perkembangan Ae. aegypti menjadi nyamuk dewasa. Kombinasi lethal ovitrap dengan atraktan air rendaman jerami dapat menjadi strategi pengendalian alternatif bagi pengelola program DBD untuk mengurangi kepadatan nyamuk Ae. aegypti dan meminimalisasi transmisi penyakit demam berdarah dengue di suatu wilayah. Kata kunci: Aedes aegypti, atraktan, lethal ovitrap, rendaman jerami


2021 ◽  
Vol 37 (4) ◽  
pp. 271-279
Author(s):  
Heidi L. Murray ◽  
Catherine A. Pruszynski ◽  
Lawrence J. Hribar

ABSTRACT Since 2011, the Florida Keys Mosquito Control District (FKMCD) has used the WALS® application strategy with VectoBac® WDG containing Bacillus thuringiensis israelensis via helicopter in Key West for the control of Aedes aegypti larval populations. In 2018, FKMCD conducted a study to determine the effectiveness of using a trailer-mounted A1 Super Duty Mist Sprayer® (A1 Mist Sprayers) with a Micronair® AU5000 (Micron Group) atomizer to apply VectoBac WDG by ground at the rate of 0.5 lb/acre (0.56 kg/ha). Bioassay cups were placed in a residential area encompassing open, moderate, and heavy cover scenarios between 0 and 300 ft (0–91.44 m) perpendicular to the spray line. An application rate of 0.5 lbs/acre (0.56 kg/ha) was used. Bioassay cups were collected after application and returned to the laboratory where 100 ml of distilled water and 10 F1 generation Ae. aegypti larvae were added. Laval mortality was monitored at 2, 4, and 24 h. Three separate runs were completed during the summer of 2018. Average larval mortality at 24 h was >90%. The field trial demonstrated sufficient efficacy to introduce this method of larviciding into operational use.


2014 ◽  
Vol 3 (1) ◽  
pp. 31
Author(s):  
Rahmawati Ekaputri ◽  
Sudarsono Sudarsono ◽  
Budi Mulyaningsih

<p>Background: <em>Vinca rosea</em> is known contain alkaloids, it was usually used to treat various diseases. Alkaloids from Vinca leaves are also already known have larvicidal activity. Based on this toxicological activity, the fruit of <em>Vinca rosea</em> was selected to investigation its larvicidal activity against the 3<sup>rd</sup> instar larvae of the mosquito vector of dengue haemorrhagic fever (DHF) <em>Aedes aegypti.</em>  Five concentrations of Vinca fruit extract were tested against the 3<sup>rd</sup> instar Aedes aegypti larvae. The different larval mortality percentages were recorded after 24 hours. Lethal concentration (LC<sub>50</sub> anf LC<sub>90</sub>) of Vinca fruit extract were calculated using Probit analysis. Phytochemical compounds  of ethanolic extract also investigated using Thin layer Chromatography (TLC). LC<sub>50</sub> and LC<sub>90</sub> values of fruit extract were 2.987 mg/ml and 32.861 mg/ml. Alkaloids were detected in extract.</p>


bionature ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Amirullah Amirullah ◽  
Nurhayu Malik ◽  
Rosmaya Rosmaya

Abstract. The study of the efficacy of betel leaf extract (Piper betle L.) and garlic extract (Allium sativum) on the mortality of Aedes aegypti mosquito larvae was carried out at the Zoology Laboratory of the Faculty of Mathematics and Natural Sciences, Halu Oleo Kendari University. Aedes aegypti mosquito larvae were obtained from the rearing of F2 from Aedes aegypti eggs that were taken by ovitrap from in Kambu Village, Kendari City, which is an endemic area of Dengue Hemorrhagic Fever (DHF). Extrac of betel leaf (Piper betle L.) and garlic extract (Allium sativum) at concentrations of 1.0%, 2.0% and 3.0% respectively and their combinations were given to Aedes aegypti larvae (L4). The results showed that the highest larval mortality (88%) occurred after 24 hours of exposure to betel leaf extract (Piper betle L.) at a concentration of 3%, whereas with garlic extract (Allium sativum) the highest larval mortality (98%) occurred at concentration 3 %, and for the highest larval mortality (99%) found in a combination of 3% betel leaf extract (Piper betle L.) and 3% garlic extract (Allium sativum). Based on WHO (2009), the most effective treatment for killing Aedes aegyti larvae is 3% garlic (Allium sativum) extract and a combination of 3% betel leaf extract (Piper betle L.) and 3% garlic extract (Allium sativum).Keywords:  Biopesticide, Mortality, Aedes aegypti, betle leaf (Piper betle L.), garlic (Allium sativum).


2019 ◽  
Vol 11 (7) ◽  
pp. 105
Author(s):  
Francisco R. de Azevedo ◽  
Glauber C. Maciel ◽  
Gilberto B. Oliveira e Silva ◽  
Francisco de O. Mesquita ◽  
Antonio C. Leite Alves

Aiming to verify the insecticidal potential of 16 native plants from the Araripe National Forest (ANFO) on L3 Aedes aegypti larvae in laboratory conditions, were researches performed in controlled conditions of temperature, air relative humidity and photophase, in a type B.O.D. climatized chamber, executed in period from August/2016 to May/2017. The adopted experimental design was completely randomized, represented by ethanolic extracts obtained from 16 native plants, besides the witness without application and with pyriproxyfen as chemical insecticide, conducted with four replicates in each plant extract. The application of the extracts was performed only once, and at 24, 48 and 72 hours, after the infestation, was determined the effects of the extracts on larval mortality. The extracts of Amargoso, oil&rsquo;tree, Lacre, Cajui, Louro smelling, Field Rosemary, Murici truthful, Janaguba and laranjinha provoke mortality above of 90% to the larvae of Aedes aegypti after three days of exposure, in the dose of 50 mL of the extracts. After 24 hours of exposure, the ethanolic extracts from barks and leaves of Field Rosemary and of laranjinha killed all the larvae. On the other hand, the extracts with higher larvicide potential were evaluated at different doses (i.e., 12.5, 25, and 50 mL/L) in a 9 &times; 3 factorial scheme, with four replicates. The ethanolic extract of the leaves of Louro smelling is the most efficient, because in any dosage it eliminates all the larvae of Aedes aegypti, thus demonstrating to be an excellent vegetable larvicide in the control of this vector after three days of exposure, whereas the bark extract of the oil&rsquo;tree is the least effective. The alkaloids and flavonoids are present in the leaves of the Louro smelling.


Author(s):  
Lame Younoussa ◽  
Kary Mallam Oumarou ◽  
Theodora Kopa Kowa ◽  
Serge Eteme Enama ◽  
Gabriel Agbor Agbor ◽  
...  

The CH2Cl2-MeOH (30:70 v/v) extracts of the seeds of Mangifera indica (Mango), Persea americana (Avocado) and Dacryodes edulis (African plum) were evaluated for potential mosquito larvicidal activity against 3rd and 4th instar larvae of Aedes aegypti, Culex quinquefasciatus and Anopheles gambiae. Extracts were diluted with 1 mL of methanol and concentrations ranging from 1000 to 125 mg/L in 4 replicates each, were prepared in the volume of 100 mL in the plastic cups (250 mL). A volume of 1 mL of methanol added to 99 mL of tap water was prepared as negative control and Bi-one (1000 mg/L) constituted a positive control. In each test solution, 25 larvae of each mosquito species were separately transferred and larval mortality was recorded after 24 h post-treatment. As results, the three plant seed extracts applied at 1000 mg/L caused for at least 79% mortality of each mosquito species larvae assessed. The seed extract of P. americana (LC50 of 98.31, 129.24 and 136.26 mg/L, respectively against An. gambiae, Ae. aegypti and Cx. quiquefasciatus larvae) was the most potent followed by D. edulis (LC50 of 176.87 mg/L for An. gambiae, 198.68 mg/L for Ae. aegypti and 201.70 mg/L for Cx. quinquefasciatus) and M. indica (LC50 of 258.98 mg/L for An. gambiae, 297.35 mg/L for Ae. aegypti and 435.45 mg/L for Cx. quinquefasciatus).  Globally, all the seed extracts were more toxic against An. gambiae larvae compared to other mosquito species and need further exploration for the development of a new botanical larvicide to reduce mosquito densities.


Sign in / Sign up

Export Citation Format

Share Document