scholarly journals Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway

Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 581-590
Author(s):  
Xiaoning Han ◽  
Zhiyong Yuan ◽  
Yajun Jing ◽  
Weigui Zhou ◽  
Yunbo Sun ◽  
...  

Abstract Sepsis is a common and lethal syndrome. Long non-coding RNA (lncRNA) transcript predicting survival in AKI (TapSAKI) has recently been found to serve as an important regulator in sepsis. However, the underlying mechanism of TapSAKI in sepsis pathogenesis remains largely unknown. Our data demonstrated that lipopolysaccharide (LPS)-induced HK-2 cell injury by weakening cell viability and enhancing cell apoptosis and inflammation. TapSAKI was upregulated and miR-205 was downregulated in LPS-induced HK-2 cells. TapSAKI knockdown or miR-205 overexpression alleviated LPS-induced cytotoxicity in HK-2 cells. TapSAKI sequestered miR-205 via acting as a miR-205 sponge. Moreover, the mitigating effect of TapSAKI silencing on LPS-induced HK-2 cell injury was mediated by miR-205. Additionally, the interferon regulatory factor 3 (IRF3) signaling was involved in the regulation of the TapSAKI/miR-205 axis on LPS-induced HK-2 cell damage. Our current study suggested that TapSAKI silencing relieved LPS-induced injury in HK-2 cells at least in part by sponging miR-205 and regulating the IRF3 signaling pathway, highlighting a novel understanding for sepsis pathogenesis and a promising target for this disease treatment.

Oncogene ◽  
2021 ◽  
Author(s):  
Yina Qiao ◽  
Ting Jin ◽  
Shengdong Guan ◽  
Shaojie Cheng ◽  
Siyang Wen ◽  
...  

AbstractInvasion and metastasis are the leading causes of death in patients with breast cancer (BC), and epithelial-mesenchymal transformation (EMT) plays an essential role in this process. Here, we found that Lnc-408, a novel long noncoding RNA (lncRNA), is significantly upregulated in BC cells undergoing EMT and in BC tumor with lymphatic metastases compared with those without lymphatic metastases. Lnc-408 can enhance BC invasion and metastasis by regulating the expression of LIMK1. Mechanistically, Lnc-408 serves as a sponge for miR-654-5p to relieve the suppression of miR-654-5p on its target LIMK1. Knockdown or knockout of Lnc-408 in invasive BC cells clearly decreased LIMK1 levels, and ectopic Lnc-408 in MCF-7 cells increased LIMK1 expression to promote cell invasion. Lnc-408-mediated enhancement of LIMK1 plays a key role in cytoskeletal stability and promotes invadopodium formation in BC cells via p-cofilin/F-actin. In addition, the increased LIMK1 also facilitates the expression of MMP2, ITGB1, and COL1A1 by phosphorylating CREB. In conclusion, our findings reveal that Lnc-408 promotes BC invasion and metastasis via the Lnc-408/miR-654-5p/LIMK1 axis, highlighting a novel promising target for the diagnosis and treatment of BC.


2021 ◽  
pp. 096032712110356
Author(s):  
Huajing Li ◽  
Fang Quan ◽  
Pengfei Zhang ◽  
Yuan Shao

Allergic rhinitis (AR) is a type I hypersensitive disease. Long non-coding RNA (lncRNA) SNHG16 acts as an oncogene in a variety of tumors and promotes the occurrence of inflammation in many inflammatory diseases. The study aims to investigate the expression of SNHG16 and its potential biological functions in AR. RT-qPCR results showed that the expression of SNHG16 in AR was up-regulated. The AR cell model was constructed by stimulating primary nasal mucosal epithelial cells from AR patients with IL-13. After knocking down the expression of lncRNA SNHG16, cell apoptosis was detected by flow cytometry, and the expression of inflammatory factors was detected by ELISA. The results showed that SNHG16 promoted cell apoptosis and inflammation. Then, bioinformatics analysis was used to screen miRNAs bound with SNHG16. Luciferase reporter gene assay and RNA pull-down experiment were used to verify the relationship. We found that the expression of miR-106b-5p was down-regulated and leukemia inhibitory factor (LIF) expression was up-regulated in the AR cell model. The expression of phospho-Janus kinase 1 and p-signal transducer and activator of transcription 3 (STAT3) were detected by Western blotting. Silencing the expression of LIF could inhibit the activity of JAK1/STAT3 pathway and further inhibit cell apoptosis and the occurrence of inflammation. Then transfected SNHG16 shRNA alone or together with miR-106b-5p antagomir into the AR cell model, we found that silencing the expression of SNHG16 down-regulated the expression of LIF and inhibited the activity of the JAK1/STAT3 pathway, cell apoptosis, and inflammation. However, miR-106b-5p antagomir weakened its inhibitory effects. The role of SNHG16 in AR was further verified by the ovalbumin-induced AR mouse model in vivo. In conclusion, SNHG16 up-regulates LIF expression by binding with miR-106b-5p, thus promoting the activity of JAK1/STAT3 pathway, and promoting the development of AR. These results provide new targets for the treatment of AR and may help reduce the damage caused by AR.


2017 ◽  
Vol 44 (3) ◽  
pp. 857-869 ◽  
Author(s):  
Li-Cheng Gong ◽  
Hai-Ming Xu ◽  
Gong-Liang Guo ◽  
Tao Zhang ◽  
Jing-Wei Shi ◽  
...  

Background/Aims: Acute myocardial infarction (AMI) occurs when blood supply to the heart is diminished (ischemia) for long time; ischemia is primarily caused due to hypoxia. The present study evaluated the effects of long non-coding RNA H19 on hypoxic rat H9c2 cells and mouse HL-1 cells. Methods: Hypoxic injury was confirmed by measuring cell viability, migration and invasion, and apoptosis using MTT, Transwell and flow cytometry assays, respectively. H19 expression after hypoxia was estimated by qRT-PCR. We then measured the effects of non-physiologically expressed H19, knockdown of miR-139 with or without H19 silence, and abnormally expressed Sox8 on hypoxia-induced H9c2 cells. Moreover, the interacted miRNA for H19 and downstream target gene were virtually screened and verified. The involved signaling pathways and the effects of abnormally expressed H19 on contractility of HL-1 cells were explored via Western blot analysis. Results: Hypoxia induced decreases of cell viability, migration and invasion, increase of cell apoptosis and up-regulation of H19. Knockdown of H19 increased hypoxia-induced injury in H9c2 cells. H19 acted as a sponge for miR-139 and H19 knockdown aggravated hypoxia-induced injury by up-regulating miR-139. Sox8 was identified as a target of miR-139, and its expression was negatively regulated by miR-139. The mechanistic studies revealed that overexpression of Sox8 might decrease hypoxia-induced cell injury by activating the PI3K/AKT/mTOR pathway and MAPK. Besides, H19 promoted contractility of HL-1 cells. Conclusion: These findings suggest that H19 alleviates hypoxia-induced myocardial cell injury by miR-139-mediated up-regulation of Sox8, along with activation of the PI3K/AKT/mTOR pathway and MAPK.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e15581-e15581
Author(s):  
Yuhao Luo ◽  
Rui Zhou ◽  
Na Huang ◽  
Li Sun ◽  
Wangjun Liao

e15581 Background: Gastric cancer (GC) is a leading cause of cancer mortality worldwide, oxaliplatin and epirubicin based chemotherapy are one of the most important treatment options for GC patients. However, drug resistance, especially multi-drug resistance remains a major obstacle for successful chemotherapy. Recently, long non-coding RNAs (lncRNAs) have been widely identified to play emerging roles in diverse physiological and pathophysiological processes including drug resistance. Our previous bioinformatics analysis showed long non-coding RNA EIF3J-AS1 was a potential multi-drug resistance gene, but the underlying mechanism is still unknown. Methods: We generated oxaliplatin resistance cells (MGC803/OXA) and epirubicin resistance cells(MGC803/EPI) based on parental gastric cancer cells MGC803. Relative expression levels of EIF3J-AS1 were measured by qRT-PCR. Transmission electron microscopy was used to measure autophagosomes. Rapamycin was applied to inducing autophagy while chloroquine and 3-methyladenine were used to block autophagy. Protein level of autophagy related genes were examined by Western Blot. Coexpression genes of EIF3J-AS1 from TCGA RNA-seq datas were analyzed by cBiportal. RNA immunoprecipitation was used to analyze endogenous microRNAs and mRNAs. Results: EIF3J-AS1 was significantly upregulated in MGC803/OXA and MGC803/EPI cells compared with parental cells MGC803. EIF3J-AS1 inhibition increased chemosensitivity to both oxaliplatin and epirubicin. Moreover, EIF3J-AS1 silence lead to the decrease of autophagy. Autophagy related gene ATG14 was identified as a downstream target gene. EIF3J-AS1 promoted ATG14 expression by directly interacting with and increasing stability of ATG14 mRNA, On the other hand, EIF3J-AS1 competitively sponged miR-188-3p and promoted ATG14 expression in a ceRNA-dependent way. Conclusions: LncRNA EIF3J-AS1 is a crucial regulator of multi-drug resistance by inducing autophagy in gastric cancer. Targeting EIF3J-AS1/ATG14 axis might be a new paradigm for cancer therapeutics.


2020 ◽  
pp. 1-11
Author(s):  
Li-Juan Pei ◽  
Peng-Jun Sun ◽  
Kui Ma ◽  
Yan-Yan Guo ◽  
Ling-Yan Wang ◽  
...  

Gastric cancer (GC) remains poor prognosis and survival issues due to the resistance of chemotherapies, such as cisplatin. The long non-coding RNA small nucleolar RNA host gene 7 (lncRNA-SNHG7) is known as an oncogenic molecule in diverse cancers. Here, we demonstrate that SNHG7 was significantly upregulated in gastric cancer and positively correlated with cisplatin resistance of gastric cancer cells that SNHG7 was significantly upregulated in cisplatin resistant cells. Silencing SNHG7 dramatically sensitized cisplatin resistant cells. In contrast, a negative correlation between lncRNA-SNHG7 and miR-34a was found that miR-34a was downregulated in gastric cancer patient tissues and significantly sensitized cisplatin resistant gastric cancer cells. Intriguingly, bioinformatical analysis indicated miR-34a has putative biding site for SNHG7 and such negative association between SNHG7 and miR-34a was verified in gastric cancer tissues. The cisplatin resistant cells displayed increased glycolysis rate and SNHG7 promoted cellular glycolysis rate of gastric cancer cells. Luciferase assay illustrated LDHA, a glycolysis enzyme, was the direct target of miR-34a. Importantly, inhibiting SNHG7 successfully suppressed LDHA expressions and sensitized cisplatin resistant cells and such inhibitory effects could be recovered by further anti-miR-34a. These findings suggest an important regulator mechanism for the SNHG7-mediated cisplatin resistance via miR-34a/LDHA-glycolysis axis.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Guijun He ◽  
Wenfeng Yao ◽  
Liang Li ◽  
Yang Wu ◽  
Guojian Feng ◽  
...  

Abstract Background LOXL1-AS1 is a long non-coding RNA (lncRNA) that plays crucial roles in various cancers. However, the functional role of LOXL1-AS1 in laryngocarcinoma remains unclear. Thus we planned to probe into the function and underlying mechanism of LOXL1-AS1 in laryngocarcinoma. Methods Gene expression was evaluated in laryngocarcinoma cells using RT-qPCR. The ability of cell proliferation and migration was assessed by CCK8, colony formation, wound healing and transwell assays. The interaction among LOXL1-AS1, miR-589-5p and TRAF6 was detected by Ago2-RIP, RNA pull down and luciferase reporter assays. Results LOXL1-AS1 was overexpressed in laryngocarcinoma cells. Silencing of LOXL1-AS1 suppressed cell proliferation, migration and EMT in laryngocarcinoma. Moreover, miR-589-5p, the downstream of LOXL1-AS1, directly targeted TRAF6 in laryngocarcinoma. Importantly, LOXL1-AS1 augmented TRAF6 expression in laryngocarcinoma cells by sequestering miR-589-5p. Besides, miR-589-5p worked as a tumor-inhibitor while TRAF6 functioned as a tumor-facilitator in laryngocarcinoma. Of note, rescue experiments both in vitro and in vivo validated that LOXL1-AS1 aggravated the malignancy in laryngocarcinoma by targeting miR-589-5p/TRAF6 pathway. Conclusions LOXL1-AS1 promotes the proliferation and migration of laryngocarcinoma cells through absorbing miR-589-5p to upregulate TRAF6 expression.


Author(s):  
Chengyu Hu ◽  
Kai Liu ◽  
Bei Wang ◽  
Wen Xu ◽  
Yexiang Ling ◽  
...  

Background: There is increasing evidence that lncRNA, a type of transcript which is over 200 nucleotides in length may serve as oncogenes or suppressor genes are implicated in the pathophysiology of human diseases. In particular, tumorigenesis and progress are closely correlated with its abnormal expression. In addition, it may become a promising target for many oncology biotherapies. Abnormal DLX6-AS1 expression affects different cellular processes such as proliferation, aggression and metastasis. This review aims to probe into the pathophysiological functions and molecular mechanisms of DLX6-AS1 in various cancers. Methods: By retrieving the literature, this review summarizes the biological function and mechanism of LncRNA DLX6- AS1 in tumor occurrence. Results: The lncRNA DLX6-AS1 is a new tumor-related RNA that has recently been found to be aberrantly expressed in a divers cancers, containing pancreatic cancer, osteosarcoma, non-small cell lung cancer, gastric carcinoma, glioma, hepatocellular cancer, colorectal carcinoma, renal carcinoma, esophageal squamous cell cancer, ovarian cancer, Ewing sarcoma, cervical cancer, breast cancer, thyroid cancer, neuroblastoma, pulmonary adenocarcinoma, nasopharyngeal carcinoma, squamous laryngeal cancer and bladder cancer, etc. Meanwhile, it is identified DLX6-AS1 regulates the aggression, translocation and proliferation of diverse cancers. Conclusion: LncRNA DLX6-AS1 may be viable markers in tumors or a potential therapeutic target for multiple tumors.


Author(s):  
Xinliang Zhang ◽  
Shimin Dong

Abstract Circular RNA (circRNA) plays an important role in the progression of sepsis. Circ_0091702 has been found to be an important regulator of sepsis progression, so its role and mechanism in sepsis progression deserve to be further explored. LPS could suppress cell viability, while enhance cell apoptosis and inflammation to induce cell injury. Circ_0091702 was downregulated in LPS-induced HK2 cells, and its overexpression alleviated LPS-induced cell injury. MiR-182 could be sponged by circ_0091702. Moreover, miR-182 inhibitor could relieve LPS-induced cell injury, and its overexpression also reversed the inhibition of circ_0091702 on LPS-induced cell injury. PDE7A was a target of miR-182, and its expression was reduced in LPS-induced HK2 cells. Additionally, silencing of PDE7A reversed the suppressive effect of circ_0091702 on LPS-induced cell injury. Our data suggested that circ_0091702 sponged miR-182 to regulate PDE7A, thereby alleviating LPS-induced cell injury in sepsis.


Sign in / Sign up

Export Citation Format

Share Document